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Abstract

The convergence of ubiquitous connectivity, large-scale data generation, and rapid ad-
vancements in machine learning is transforming the field of cybersecurity. The widespread
adoption of interconnected systems including Internet of Things devices, mobile platforms,
and cloud infrastructures has introduced new attack surfaces and significantly increased
the complexity of securing digital environments. Concurrently, these technologies have
enabled the development of intelligent, data-driven defense strategies. Achieving effective
protection in these settings requires not only applying machine learning to detect and
prevent threats but also recognizing that such models can themselves become targets of
adversarial manipulation. This survey presents a comprehensive analysis of recent progress
at the intersection of machine learning and cybersecurity. It explores defensive applications
such as malware detection, network traffic classification, and anomaly detection, as well
as offensive strategies including adversarial evasion, poisoning, and backdoor attacks.
Particular attention is paid to adversarial machine learning, highlighting the increasing
sophistication of attacks that exploit model vulnerabilities and the corresponding evolution
of defense mechanisms. Beyond synthesizing current research, the survey also identifies
key open challenges and emerging research directions. This survey provides a comprehen-
sive and accessible reference for researchers and practitioners aiming to understand and
advance the secure application of machine learning across diverse cybersecurity domains.

Keywords: Adversarial Machine Learning; Trustworthy Machine Learning; Responsible
AI; Malware Detection; Network Traffic Analysis; Anomaly Detection.

1. Introduction

Machine learning refers to a class of computational methods designed to build models
that learn from data in order to perform specific tasks, without relying on manually defined
rules or heuristics. By optimizing performance over large datasets, these models are capable
of identifying intricate patterns and relationships, thereby supporting both predictive and
descriptive capabilities. Consequently, machine learning has achieved notable success
across diverse fields, including natural language processing, computer vision, financial
modeling, and autonomous systems [20,26,27]. With the continued expansion of data
availability and computational power, machine learning has become a cornerstone in both
academic research and industrial practice.

At the same time, cybersecurity has undergone a profound transformation. Modern
information systems are now highly interconnected, heterogeneous, and increasingly
defined by software, driven by the widespread adoption of smart devices, cloud computing
platforms, and edge-based architectures. This evolution has dramatically expanded the
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attack surface, exposing digital infrastructure to more sophisticated, stealthy, and large
scale threats [29]. Traditional security mechanisms, such as rule-based firewalls, manually
configured intrusion detection systems, and signature-based malware scanners, are proving
insufficient in addressing these emerging challenges. Their reliance on static rules and
known threat patterns limits their ability to detect novel, evasive, or zero-day attacks
[28]. As a result, there is an urgent need for intelligent, adaptive, and data-driven security
approaches capable of learning from dynamic environments and responding proactively to
evolving threats.

Machine learning offers powerful tools for addressing emerging cybersecurity chal-
lenges. By enabling systems to learn from past behaviors, process large volumes of data,
and make timely decisions, machine learning techniques have demonstrated strong po-
tential across a range of security applications. These include intrusion detection, malware
classification, anomaly detection, network traffic analysis, vulnerability discovery, and
behavioral modeling. For instance, machine learning-based intrusion detection systems can
distinguish between benign and malicious traffic by identifying patterns in network flows.
Similarly, malware classifiers can detect harmful executables by analyzing either static
code features or dynamic runtime behaviors [30,31]. Unlike traditional rule-based methods,
machine learning models are capable of adapting to new threats and often maintain high
accuracy across varied datasets and operational environments.

The growing adoption of machine learning in cybersecurity is further fueled by the
exponential increase in data volume and complexity. Modern digital systems, including
enterprise servers, mobile devices, and embedded IoT platforms, continuously generate
large streams of high-dimensional and often unlabeled data. Extracting meaningful in-
sights from this data in real time requires scalable, noise-tolerant, and adaptive algorithms
capable of handling non-stationary distributions with low latency. Deep learning models,
such as convolutional neural networks, recurrent architectures, and transformers, have
demonstrated strong performance in these settings. Recent studies [20,27] have also applied
transfer learning and pretraining techniques, originally developed for natural language
processing, to binary code analysis and malware detection with promising results.

However, the convergence of machine learning and cybersecurity also introduces
significant risks. Despite their capabilities, machine learning models are inherently vul-
nerable to various forms of adversarial manipulation [32]. Attackers can craft adversarial
examples that subtly perturb inputs to mislead classifiers, poison training data to degrade
model performance, or extract sensitive information from trained models through inference
attacks [61]. In some cases, entire models can be compromised by inserting backdoors or
trojans. These vulnerabilities create novel attack vectors that target the learning algorithm
itself rather than the systems it is designed to protect. Moreover, adversaries are increas-
ingly using machine learning to amplify the effectiveness, stealth, and scalability of their
attacks, creating a dual-use dynamic in which both attackers and defenders rely on similar
technologies.

The rapid evolution of cyber threats and the growing arms race between defensive
and offensive uses of machine learning highlight the urgent need for a comprehensive
understanding of how these technologies are applied, evaluated, and secured. As attackers
develop more sophisticated and adaptive methods, defenders must continually evolve their
tools and strategies to keep pace. Machine learning has become both a powerful enabler
of next-generation defense systems and a new target of attack. This dual role introduces
complex challenges, including ensuring the robustness, interpretability, and trustworthi-
ness of ML-driven security mechanisms. For students, researchers, and practitioners in
cybersecurity, it is no longer sufficient to simply apply machine learning algorithms; they
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must also anticipate adversarial behaviors, identify hidden failure modes, and design
systems that can operate securely in dynamic, high-stakes environments.

This survey aims to provide an accessible, technically grounded synthesis of the cur-
rent state of research at the intersection of machine learning and cybersecurity. It is intended
to serve both as a resource for those new to the field and as a reference for experienced
researchers seeking to explore new directions. We present a structured overview that spans
fundamental concepts, key applications, and emerging challenges, with a focus on practical
relevance and real-world impact. By integrating insights from recent academic publications
and experimental studies, the survey identifies patterns, exposes gaps, and highlights fu-
ture research opportunities. In doing so, we hope to foster a deeper understanding of how
machine learning can be leveraged to improve cybersecurity outcomes while remaining
aware of the risks it introduces.

To structure the discussion, this survey is organized around three core domains that
represent key areas where machine learning intersects with cybersecurity:

• Malware Detection: We examine how machine learning techniques are used to iden-
tify malicious software by analyzing both static features, such as byte sequences and
API call graphs, and dynamic behaviors, including runtime system interactions. This
survey covers a range of models, from traditional classifiers to modern deep learning
architectures and transformer-based approaches.

• Network Traffic Analysis and Anomaly Detection: We review machine learning
approaches for identifying suspicious or abnormal activity in communication net-
works. These methods are especially important for securing distributed environments
and IoT ecosystems, where conventional intrusion detection systems often fall short.
Techniques discussed include unsupervised anomaly detection, deep autoencoders,
clustering methods, and federated learning for decentralized threat detection.

• Adversarial Machine Learning: We examine how adversaries exploit vulnerabilities
in machine learning models and how defenders design countermeasures to protect
them. This section covers common attack strategies, including evasion, poisoning,
and backdoor insertion, as well as defensive techniques such as adversarial training,
robust optimization, and input validation at inference time.

Each domain presents distinct challenges related to data representation, algorithmic
complexity, interpretability, and robustness against adversarial threats. Throughout this
survey, we highlight notable contributions, summarize experimental findings, and discuss
current limitations, while identifying promising directions for future research. Our objective
is to support the advancement of intelligent cybersecurity systems that are not only accurate
but also transparent and resilient in real-world deployments.

2. Related Work

The intersection of machine learning and cybersecurity has attracted increasing re-
search attention, resulting in a growing body of survey literature. However, most prior
works adopt a narrow scope, focusing either on a specific threat model, a particular security
domain, or a subset of machine learning techniques. In contrast, this survey aims to pro-
vide a comprehensive and unified perspective that spans offensive and defensive machine
learning, real-world cybersecurity applications, and emerging trustworthy AI paradigms.

Early works in this space typically emphasized individual threat vectors or specific
cybersecurity use cases. For example, Demetrio et al. [16] conducted a technically detailed
and systematic review focusing exclusively on adversarial evasion attacks targeting Win-
dows malware detectors. Their survey presents pseudocode-level algorithms and curated
benchmarks, offering valuable insights into low-level adversarial manipulation techniques.
Nevertheless, its emphasis on a single OS ecosystem and evasion-only threat model limits
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its applicability to broader machine learning security settings, such as encrypted traffic
analysis, cloud security, and secure model deployment.

Similarly, Ullah et al. [62] examined computer-vision-inspired malware analysis
pipelines, where binaries are converted to grayscale images and classified using convolu-
tional neural networks. They presented taxonomies of visual features, CNN architectures,
and datasets. This perspective highlights a creative crossover between computer vision
and security, but does not explore recent advances such as transformer-based binary repre-
sentation learning, self-supervised malware embeddings, or adversarial training for code
and binary classifiers. Furthermore, their focus is primarily on malware, without extending
to modern IoT and network detection tasks.

Recent survey efforts have broadened the analysis of adversarial machine learning.
Zarras et al. [16] provided a detailed overview of adversarial defenses across multiple
algorithmic categories. Their survey systematically analyzes threat models, robustness
strategies, and evaluation techniques, offering a structured defense taxonomy. However,
the work primarily focuses on adversarial robustness and does not cover broader ML-
for-security applications such as federated IoT threat detection, self-supervised traffic
classification, or industrial cybersecurity systems.

Similarly, Pelekis et al. [17] examined adversarial machine learning from a cross-
industry angle, emphasizing attack vectors affecting critical sectors including healthcare,
transportation, and finance. Their review provides a useful industry lens and policy context,
yet emphasizes the attacker-defender interplay rather than end-to-end ML system design,
real-time detection challenges, and the role of large-scale representation learning in security.

Beyond academic surveys, the community has also seen standardization efforts. Vas-
silev et al. [18] published a NIST taxonomy that formalizes adversarial machine learning
terminology, establishing a common lexicon for attacks and mitigations. This work provides
valuable alignment for threat modeling and evaluation frameworks, yet it does not review
empirical ML-based cybersecurity systems, emerging architectures like transformers and
graph neural networks, or the privacy-utility trade-offs in federated security learning.

A complementary body of work studies narrower paradigms. Bai et al. [63], for
instance, focus exclusively on membership inference attacks in federated learning, offering
detailed insights into privacy leakage in distributed training. While critical for privacy-
preserving security, such narrow focus does not address broader ML-enabled detection
challenges or adversarial resilience in operational networks. Other task-specific surveys
have explored backdoor attacks, poisoning strategies, and secure model extraction defenses,
but often in isolation and primarily within computer vision tasks.

In contrast, this survey provides a unified and cross-domain synthesis. We examine
(i) offensive machine learning techniques such as adversarial evasion, poisoning, model
extraction, and backdoor attacks, and (ii) defensive applications across malware detection,
encrypted traffic analysis, IoT anomaly detection, and cloud-scale network modeling. We
further highlight emerging paradigms including transformer architectures, graph neural
networks, federated and self-supervised learning, and the growing role of large language
models in cybersecurity workflows. Importantly, we also discuss practical dimensions such
as interpretability, scalability, data governance, and real-world deployment challenges,
factors often overlooked in narrower works.

In summary, while prior surveys have contributed valuable knowledge within specific
niches, no existing review provides an integrated treatment that connects modern machine
learning advances, adversarial threat landscapes, and practical security deployment. By
bridging these research threads, our survey aims to offer a comprehensive reference that
supports both foundational understanding and the design of trustworthy, resilient, and
adaptive ML-driven cybersecurity systems.
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3. Review Methodology

To ensure rigor and reproducibility, we adopted a structured process for identifying,
screening, and selecting the literature included in this survey. We queried major scholarly
databases including IEEE Xplore, ACM Digital Library, SpringerLink, Scopus, and arXiv.
The search period primarily covered the most recent ten years, capturing the rapid evo-
lution of machine learning and adversarial machine learning in cybersecurity. Keyword
combinations were formed using terms such as machine learning, cybersecurity, adversarial
learning, malware detection, intrusion detection. Search expressions were adapted to each
digital library, and backward and forward citation tracing was used to identify additional
influential works.

Publications were first screened by title and abstract, followed by full-text review
for relevance and technical depth. We prioritized peer-reviewed journal and conference
papers, but also included high-impact preprints when they provided timely coverage of
emerging research directions or when peer-reviewed alternatives were not yet available.
When a paper appeared in both preprint and peer-reviewed form, the peer-reviewed
version was retained. Studies were included if they directly addressed machine learning
for cybersecurity or security for machine learning, offered a technical contribution such
as a model, dataset, taxonomy, or empirical study, and demonstrated clear relevance to
adversarial resilience or ML-enabled defense strategies.

Works were excluded if they lacked technical content, focused solely on traditional non-
ML security techniques, repeated content from previously selected papers, or constituted
commentary without methodological contribution. After screening, the remaining papers
were synthesized across thematic categories aligned with this survey.

Table 1. Summary of the surveyed malware detection papers

Paper Robustness Architecture Dataset Notes

[36] Minimal/none Transformer Original dataset Embedding generation with
transformers

[35] Minimal/none Transformer BinaryCorp(original work) Applicable to vulnerability detec-
tion

[48] Minimal/none Decision tree Customized NPM dataset Applied to identify unfound ma-
licious npm packages

[40] Minimal/none CNN Kaggle malware classifica-
tion competition

Use of Perceptual Hashing for
quick initial classification

[41] Minimal/none CNN/Several CICMaldroid2020/Drebin Comparative study of several
models

[42] Minimal/none CNN Malimg, Microsoft BIG 2015,
Malevis

Application of pre-trained image
models

[38] Minimal/none Transformer Androzoo Detected wild malware with
59.3% accuracy

[39] Minimal/none CNN Filtered Large PE Malware
from VirusTotal

High few-shot accuracy

[44] Significant GNN CICMaldroid2020/Drebin Developed retraining process for
adversarial robustness

[45] Minimal/none NMF/Clustering EMBER-2018 100% true rejection on unseen
malware families.

[43] Significant Decision Tree HPC dataset derived from
VirusTotal

Adversarial effetiveness reduced
50-fold with retraining

4. Malware Detection

Malware refers to software intentionally designed to disrupt, damage, or gain unautho-
rized access to computer systems, often serving the objectives of malicious actors. Its origins
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precede the modern internet, with the first known networked worm, Creeper, demonstrated
by Bob Thomas in 1971 [34]. As modern computing environments become increasingly
diverse, ranging from mobile devices and embedded IoT platforms to large scale cloud
infrastructures, malware has evolved to become more complex, evasive, and polymorphic.
This evolution presents formidable challenges to traditional detection strategies that rely
on signature matching, checksum verification, or handcrafted heuristic rules. These con-
ventional methods, while effective against known threats, require prior knowledge and
often fail to detect zero-day attacks or novel malware variants.

To address these limitations, researchers have increasingly turned to machine learning
to improve malware detection. These data-driven techniques learn behavioral and struc-
tural patterns from existing samples and generalize to previously unseen threats. Recent
research has applied techniques originally developed in fields such as natural language
processing and computer vision. NLP inspired approaches, especially those leveraging
transformer models, treat binary code as token sequences, enabling the extraction of seman-
tic representations useful for classification and similarity analysis. In contrast, vision based
methods transform executable binaries into grayscale images and apply convolutional
neural networks to identify spatial patterns that separate malicious files from benign ones.

Although these approaches have shown strong performance on various datasets, key
challenges remain. These include detecting novel malware families with limited training
examples, improving resilience to adversarial inputs, and enhancing model interpretability
and operational scalability. In practice, only a few of the surveyed studies explore these
robustness issues in depth.

To provide an organized comparison of existing studies, Table 1 summarizes a se-
lection of recent machine learning based malware detection research. It outlines the core
architecture used in each study, the dataset employed, the degree of adversarial robustness
considered, and notable implementation notes. This structured summary helps highlight
emerging trends, research gaps, and potential opportunities for future development in
malware detection using machine learning.

4.1. NLP-Inspired and Transformer-Based Malware Detection

A growing trend in cybersecurity research is the adaptation of natural language
processing techniques to malware detection. This approach stems from the conceptual
similarity between binary code and natural language: both can be modeled as structured
sequences governed by syntax and semantics. By treating code as a form of language, NLP-
inspired methods can be employed to learn contextual embeddings that capture intricate
program behavior, thereby improving malware classification accuracy and resilience.

Among NLP-based techniques, the transformer architecture has emerged as partic-
ularly impactful, with BERT (Bidirectional Encoder Representations from Transformers)
being a prominent example. BERT is trained through two self-supervised pretraining tasks:
masked language modeling (predicting masked tokens in a sentence) and next sentence
prediction (determining whether two sentences appear in sequence) [26]. Its success in
capturing deep contextual semantics in text has inspired a wave of adaptations for binary
analysis and malware detection.

Wang et al. developed jTrans, a BERT-style model specifically tailored for binary code
similarity detection (BCSD) [35]. They replaced the next-sentence prediction task in BERT
with a novel control-flow jump prediction task, allowing the model to learn execution flow
dependencies within binary code. This pretraining strategy yielded a 99.5% accuracy in
the jump prediction task, and significantly improved BCSD performance by 7.5% over a
standard BERT baseline. This work highlights how carefully selected pretraining tasks can
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infuse domain-specific knowledge into transformer models, enhancing their downstream
effectiveness.

Building on similar principles, Li et al. introduced PalmTree, which applies the
BERT architecture to generate instruction-level embeddings from disassembled code [36].
These embeddings are designed to serve as input to downstream classifiers for malware
and vulnerability detection. Experimental results showed that PalmTree embeddings
outperformed prior embedding schemes across multiple benchmarks, demonstrating the
utility of language modeling for capturing semantic representations of machine instructions.

Beyond binary similarity and instruction embedding, transformers have also been
directly applied to malware classification. Long et al. trained a transformer-based model
on Android malware samples from the Androzoo dataset, achieving a 59.3% detection rate
on real-world, wild malware instances [38]. Notably, this performance was comparable
to that of leading commercial antivirus solutions at the time, suggesting the feasibility of
transformer-based approaches in operational environments. Unlike traditional signature-
based detection, transformer models can generalize to previously unseen malware variants,
making them well-suited for evolving threat landscapes.

The success of these approaches reflects a broader convergence between cybersecu-
rity and advances in NLP. In particular, the context-aware representations produced by
transformers are capable of capturing nuanced patterns in code behavior, control flow, and
instruction semantics. These representations are less brittle than manually crafted features
and offer better generalization across diverse malware families and evolving attack vectors.

Despite promising results, several open challenges remain. Many current transformer-
based models assume access to large, labeled corpora for pretraining or fine-tuning, which
may not always be available in malware domains. Moreover, limited attention has been
given to evaluating the adversarial robustness of these models. For example, jTrans and
PalmTree report impressive classification accuracy but do not analyze the models’ resilience
to adversarial examples or evasion attacks. This omission presents a potential vulnerability,
as adversaries could craft subtly perturbed binaries that manipulate token representations
and bypass detection.

Figure 1. Workflow of NLP-inspired malware detection using transformer-based models. Raw
binaries are tokenized and processed similarly to text data, enabling pre-training with NLP objectives
like masked prediction and instruction sequence modeling. This allows fine-tuning for downstream
malware detection tasks.
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In summary, the integration of NLP and transformer architectures into malware detec-
tion represents a powerful and promising direction for both research and deployment. As
illustrated in Figure 1, the typical workflow begins by treating raw binaries as sequences,
analogous to natural language tokens. These sequences undergo tokenization and em-
bedding, followed by pretraining using NLP-inspired objectives such as masked token
prediction or control flow modeling. The pretrained models, typically based on transformer
architectures like BERT, can then be fine-tuned for downstream malware classification tasks.
This pipeline enables the extraction of rich, contextual representations from binary code,
offering improved detection accuracy and better generalization across diverse malware
families. As transformer-based NLP continues to advance, with developments such as
RoBERTa, GPT-style models, and domain-specific pretraining objectives, future research
should explore their potential to enhance robustness against adversarial samples and
adaptability to emerging threats in cybersecurity.

4.2. Vision-Inspired and CNN-Based Malware Detection

Convolutional neural networks, originally developed for image classification and
object recognition tasks in computer vision, have been successfully adapted for malware
detection by treating binary code as image-like data. This approach leverages the spatial
pattern recognition capabilities of CNNs to identify malicious behavior patterns embedded
within binary files. In this line of work, malware binaries are typically converted into
grayscale images where each byte is mapped to a pixel value. These representations
enable deep learning models to process binary code as if it were image data, allowing for
automated feature extraction and robust classification.

A notable example is DPNSA, presented by Chai et al., which introduces a dynamic
convolutional architecture to address the few-shot classification challenge in malware
detection [39]. Few-shot learning aims to classify samples from classes with limited labeled
examples, a critical need in cybersecurity where novel malware variants often appear before
large training datasets can be collected. DPNSA modifies standard CNNs to incorporate
dynamic parameter adjustments, enhancing the model’s adaptability to limited-data sce-
narios. The model achieved strong results on both 5-shot and 10-shot classification tasks,
with accuracies of 88.60% and 90.28% respectively, outperforming conventional baselines
by margins of 5.25% and 3.65%. This work demonstrates the practical viability of deploying
deep learning models for real-world malware detection where data scarcity is a persistent
issue.

Beyond standard CNNs, other approaches have incorporated hybrid techniques to
improve accuracy and generalizability. Li et al. proposed PH-CNN, a model that combines
perceptual hashing and CNNs for malware classification [40]. Perceptual hashing allows
for the generation of hash values that are resilient to minor alterations in the input image
while preserving semantic similarity. In PH-CNN, the binary image is first compared to a
database of known malware families using Hamming distance on perceptual hashes. If no
match is found, the CNN component is used to classify the image. This two-stage hybrid
pipeline significantly enhances robustness and accuracy, achieving 98.98% accuracy on
the Microsoft Malware Classification Challenge dataset. The combination of hashing and
deep learning provides a compelling direction for defending against obfuscated or slightly
modified malware samples.

Nguyen et al. explored additional CNN-based architectures tailored for Android
malware classification [41]. Their study compared a range of models, including random
forests and one-dimensional CNNs (1D-CNNs), across multiple datasets such as Drebin
and CICMalDroid2020. The 1D-CNN model excelled in handling sequential byte-level
data and outperformed traditional machine learning approaches on several benchmarks.
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Their results highlight that CNNs can be effective not only in image-based representations
of binaries but also in directly learning from sequential opcode-level or byte-level inputs,
especially in resource-constrained mobile and IoT environments.

Another interesting direction involves the application of transfer learning and pre-
trained vision models to malware detection. Aslan et al. proposed leveraging popular
CNN architectures such as AlexNet and ResNet-50, originally trained on ImageNet, as
feature extractors for binary image classification [42]. Their findings reveal that high-level
visual features extracted from these models can generalize surprisingly well to malware
classification tasks, especially when combined with fine-tuning techniques or additional
fully connected layers. This approach benefits from reduced training time and improved
performance when labeled malware datasets are limited.

Figure 2. Workflow of CNN-based malware detection. Malware binaries are preprocessed into
visual or sequential representations, which are then passed through convolutional layers to extract
hierarchical features. Advanced strategies such as perceptual hashing, few-shot learning, and transfer
learning enhance the system’s ability to detect both known and previously unseen malware variants.

In summary, convolutional neural networks (CNNs) provide a powerful and flexible
approach to malware detection by enabling automated feature extraction from both visual
encodings and sequential representations of binary code. Their ability to generalize from
raw byte sequences or image-like inputs allows them to detect subtle structural patterns
and behavioral signatures that may be missed by traditional techniques. As illustrated
in Figure 2, the typical workflow involves converting malware binaries into grayscale
images or byte sequences, extracting hierarchical features through convolutional layers,
and performing classification using fully connected layers or specialized decision modules.
Enhancements such as perceptual hashing, few-shot learning frameworks, and transfer
learning further boost the model’s ability to detect obfuscated or previously unseen mal-
ware families. Continued innovation in CNN-based architectures, especially in combining
them with hybrid models or hierarchical learning strategies, holds strong promise for
tackling the evolving and adversarial nature of malware threats in practical deployments.

4.3. Challenges

Despite impressive advances in machine learning-based malware detection, several
challenges continue to limit the effectiveness and real-world deployment of these models.
Two key issues stand out: the difficulty of detecting novel or low-shot malware families,
and the limited attention given to adversarial robustness.

One major limitation in current approaches is the reliance on many-shot classification
tasks. Most surveyed works utilize datasets where each malware family is well-represented.
For example, in the Drebin dataset used by Nguyen et al. [41], the smallest class, “Geinimi,”
still contains 92 samples, while “FakeInstaller” has 925 samples. However, in real-world
scenarios, newly emerging malware families may initially be represented by only a handful
of samples, or none at all. This makes few-shot or zero-shot generalization a critical capa-
bility for practical detection systems. Only a few papers, such as Chai et al. [39], attempt to
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tackle this through dynamic convolutional architectures for few-shot learning. Yet even
these approaches may struggle with entirely novel malware generated by polymorphic or
metamorphic engines.

Generalization challenges are not limited to data scarcity. The ability to transfer
learned features across different malware types or platforms is still underdeveloped. Wang
et al. [35] demonstrate that pretraining on binary code control flow tasks (e.g., jump
prediction) improves similarity detection, suggesting that transferable learning objectives
can help. Likewise, Aslan et al. [42] leverage pretrained vision models (AlexNet and
ResNet-50) for feature extraction on malware binaries. In another direction, Eren et al.
[45] apply non-negative matrix factorization (NMF) to extract latent feature matrices for
clustering, achieving 100% true rejection rate for novel malware. Note that the result
reported under controlled hold-out evaluation where novel malware families were excluded
during training, and performance may differ in real-world deployment due to malware
diversity, evolution over time, and dataset representativeness. These results indicate that
there exist learnable, reusable representations in the binary domain, but the research
community still lacks a standardized approach to extract and utilize them effectively.

A second, equally pressing challenge is the lack of robustness against adversarial
attacks. As shown in Figure 3, most surveyed studies provide little or no analysis of
how their models perform under adversarial perturbations. This oversight is particularly
concerning given that attackers can subtly manipulate binaries to evade detection without
compromising malware functionality.

Among the few exceptions, Elnaggar et al. [43] explore adversarial robustness using a
tree-based detection model trained on hardware performance counters. Their approach
incorporates a robust score function during tree construction, accounting for all possible
perturbations at each node split. This method improves resilience while maintaining
interpretability and scalability, though it is limited to tabular data modalities.

Yumlembam et al. [44] adopt a different strategy by retraining Graph Neural Net-
works (GNNs) with adversarial examples injected into the training set. While this improves
robustness, it slightly degrades clean-data accuracy. Such trade-offs remain a common chal-
lenge in adversarial defense, particularly in malware detection where minor perturbations
may not be semantically meaningful or reversible.

Figure 3 provides a visual overview of the extent to which different papers incorporate
adversarial robustness. It highlights a critical research gap and calls for the integration of
defense-aware evaluation metrics into malware detection benchmarks.

Figure 3. Surveyed malware detection models and their incorporation of adversarial robustness.
Most lack defense mechanisms or evaluation against adversarial examples.

In conclusion, while current machine learning-based malware detection methods
achieve strong performance on benchmark datasets, they must evolve to address real-world
threats. Future work should emphasize low-shot generalization, robust feature learning,
and adversarial defenses. Exploring combinations of transformers, CNNs, and GNNs with
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Table 2. Summary of the surveyed network traffic analysis and anomaly detection papers

Name Model Dataset Type Notes

[37] Transformer or
BERT

CSTNET Encrypted traffic classifica-
tion

Modified natural language pretrain-
ing model BERT

[51] Dense NN UNSW-
NB15

Federated anomaly detec-
tion

Privacy protection for potential IoT
application

[47] DFT, SMT Several Realtime anomaly detec-
tion

Operates in the frequency domain in-
stead of packet-level

[46] Tree and Forest Original Encrypted traffic classifica-
tion

Able to identify DNS over HTTPS and
browser type

[28] Autoencoder Original Anomaly detection for IoT
botnets

Produced dataset from actual botnet
infected network of devices

[49] Decision Trees Several Model interpretation ap-
proach

Performs interpretable model extrac-
tion

robust optimization and self-supervised learning may offer promising directions to bridge
these gaps. .

5. Network Traffic Analysis and Anomaly Detection

As encrypted communication protocols such as HTTPS, TLS, and DNS over HTTPS
become increasingly widespread, traditional rule-based traffic inspection tools face mount-
ing limitations in understanding and classifying network activities. Since the payloads
of such traffic are hidden, conventional signature or pattern matching methods often fall
short. To address this gap, researchers have explored machine learning techniques capable
of extracting meaningful patterns from encrypted or anonymized traffic to support security
analysis and threat detection.

The machine learning approaches surveyed in this section broadly fall into two over-
lapping categories. The first is network traffic analysis, which focuses on identifying
and classifying traffic patterns based on observable characteristics like flow timing, burst
structure, and packet size distribution, even when payload contents are inaccessible. For
example, encrypted bursts of traffic can be analyzed to infer the originating application or
detect covert channels [37,46].

The second category is anomaly detection, which seeks to learn a representation of
normal or benign network behavior and then flag deviations that may signal malicious
activity, misconfigurations, or previously unseen threats. These models typically rely on
unsupervised or semi-supervised techniques such as auto-encoders or clustering based on
frequency domain features to detect irregularities in real time [28,47].

Both types of techniques demonstrate that even in the absence of decrypted payloads,
statistical signals and structural metadata in network traffic can be leveraged to draw
security relevant conclusions. This capability is becoming increasingly essential in mod-
ern cybersecurity environments, where privacy preserving protocols and sophisticated
adversaries coexist.

To provide an overview of the contributions discussed in this section, Table 2 summa-
rizes the key characteristics of the reviewed papers, including the models used, datasets
employed, analysis type, and notable technical features. The subsections that follow offer
a more detailed discussion of recent advances in traffic analysis and anomaly detection,
followed by a discussion of cross-cutting challenges related to interpretability, scalability,
and adversarial resilience.
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5.1. Network Traffic Analysis

With the proliferation of encryption protocols, conventional deep packet inspection
techniques are increasingly rendered ineffective. While encryption preserves confidentiality,
it also complicates the task of traffic classification and threat detection for cybersecurity
practitioners. Consequently, machine learning models have emerged as powerful tools to
infer meaningful patterns and application level semantics from encrypted traffic without
decrypting the payload. This subsection reviews recent advances in using ML for encrypted
traffic analysis, demonstrating that even limited observable features such as packet size,
timing, and sequence can provide rich input for inference.

Transformer Based Traffic Representation. Lin et al. [37] propose a novel application
of the BERT transformer architecture, originally developed for natural language processing,
to the classification of encrypted network traffic. Rather than textual tokens, their model
ingests sequences of low-level packet features such as size, direction, and interarrival
timing. The pretraining process is inspired by masked language modeling, where a portion
of the input sequence is masked and predicted by the model. Notably, they replace 10
percent of the masked tokens with randomly selected alternatives rather than a static mask
token. This design choice encourages the model to better generalize in the presence of
real-world noise.

In addition to standard masked prediction, Lin et al. introduce a self supervised
task called same origin detection, wherein the model must infer whether two segments or
bursts of traffic originate from the same application source. Importantly, all pretraining
is conducted on entirely unlabeled traffic data, which showcases the feasibility of self
supervised learning in domains where labeled examples are scarce or unavailable.

Figure 4 provides an overview of this architecture. Packet-level features serve as input
to the transformer model, which undergoes self supervised training before fine tuning for
inference tasks such as application classification or randomness analysis. The resulting
model not only achieves superior performance compared to ten state of the art baselines
in both few-shot and many-shot scenarios, but also demonstrates strong generalization
capabilities. This includes promising performance on auxiliary tasks such as entropy
estimation, reinforcing the utility of pretrained transformer based models for encrypted
traffic representation.

Figure 4. Transformer based architecture for encrypted traffic representation. The model is pretrained
on sequences of packet features using self supervised tasks, followed by fine tuning for downstream
inference.

ML Based Classification of DoH Traffic. In another work, Vekshin et al. [46] ex-
amine the classification of DNS over HTTPS traffic, a protocol often exploited for covert
communication. They evaluate five widely used ML classifiers, including AdaBoost and
Random Forest, to determine their efficacy in classifying DoH traffic. Notably, AdaBoost
and Random Forest achieved near perfect performance, both reporting 99.9% accuracy.

Their model is not only able to detect traffic anomalies but also classify the client appli-
cation (e.g., Chrome, Cloudflared, or Firefox) generating the traffic, achieving recall scores
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of 99.0%, 99.9%, and 98.9%, respectively. These results highlight that despite encryption,
significant application level fingerprints persist in traffic metadata. However, the authors
acknowledge a potential limitation: padded DoH queries might reduce the effectiveness of
such classifiers, although this aspect remains unexplored in their evaluation.

Broader Implications. Together, these two studies exemplify the growing trend of
applying models from natural language processing and structured learning to network
security. They demonstrate that encryption is not a definitive barrier to ML based inference.
Rather, it shifts the focus from payload inspection to temporal, statistical, and structural
traffic features. In both cases, ML models effectively learn subtle patterns embedded in
traffic metadata, which can be used to infer origin, behavior, and even the type of client
application in use.

As encrypted communication becomes the norm, the ability to infer semantic informa-
tion from such data without compromising user privacy is critical. These results suggest
that future work should continue exploring self supervised pretraining, cross task general-
ization, and robustness to evasion techniques such as query padding or traffic morphing,
to maintain the relevance and utility of ML driven network analysis systems.

5.2. Anomaly Detection

This subsection explores machine learning techniques developed for identifying
anomalous behavior in network traffic, particularly in Internet of Things (IoT) environ-
ments. These techniques aim to model normal network activity and subsequently flag
deviations that may indicate malicious actions, such as botnet communication, data exfil-
tration, or command-and-control signaling. The ability to detect anomalies in real time
is essential for modern cybersecurity systems, especially as the complexity and scale of
networked devices grow. As encrypted protocols become ubiquitous and attackers adopt
increasingly stealthy tactics, unsupervised and semi-supervised learning approaches have
gained traction due to their adaptability and minimal reliance on labeled data.

Autoencoder-based IoT Anomaly Detection. Meidan et al. [28] proposed N-BaIoT,
one of the earliest works targeting anomaly detection for IoT devices. Their framework
trains per-device deep autoencoder models on benign traffic to learn compact represen-
tations of normal behavior. An autoencoder is composed of two parts: an encoder that
compresses the input into a latent space, and a decoder that reconstructs the original input
from this representation. In N-BaIoT, any traffic that results in a high reconstruction error
is flagged as anomalous. The authors evaluated their model on network traffic infected
by Mirai and BASHLITE botnets and achieved a perfect true positive rate with a false
positive rate as low as 0.007. This per-device modeling approach ensures that the system is
sensitive to subtle deviations unique to each device’s behavioral profile. As IoT devices are
typically low-power and task-specific, such profiling enables precise detection of malicious
deviations while maintaining low inference costs.

Frequency-Domain Statistical Clustering. Fu et al. [47] introduced Whisper, a sta-
tistical anomaly detection framework that leverages frequency-domain characteristics of
network traffic for robust and low-latency detection. The system extracts frequency and
timing features from packet streams using Discrete Fourier Transformation (DFT), trans-
forming the temporal traffic profile into the frequency domain. These frequency features
are then clustered, and any test sample that lies beyond a threshold distance from the
nearest cluster is labeled as anomalous. Since the model is trained only on benign traffic, it
aligns with the principles of semi-supervised learning. In empirical evaluations, Whisper
achieved near-instantaneous inference speeds (average latency of 0.0361 seconds) and
demonstrated robustness against adversarial injection attacks. For instance, the system
maintained effectiveness even when benign-looking packets were mixed into malicious
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streams, with a limited 10.46% degradation in performance as measured by the area under
the ROC curve. These results suggest that frequency-domain representations can capture
meaningful signal structures resilient to evasion techniques.

Discussion and Implications. Figure 5 compares two representative anomaly detec-
tion techniques, autoencoder-based and frequency-domain statistical methods, highlighting
their respective architectures and detection pipelines. The left side of the figure illustrates
the N-BaIoT framework, where an encoder-decoder structure is trained per IoT device to
reconstruct benign traffic patterns. Anomalies are identified based on high reconstruction
error. The right side depicts Whisper, where network traffic undergoes a frequency trans-
form followed by clustering, and deviations from learned cluster patterns are flagged as
anomalies.

Figure 5. Comparison of two anomaly detection frameworks. The left shows an autoencoder-based
approach (e.g., N-BaIoT) that reconstructs benign IoT traffic to detect deviations. The right illustrates
a frequency-domain method (e.g., Whisper) that transforms network traffic using Discrete Fourier
Transform and clusters the results to flag anomalies.

Both N-BaIoT and Whisper exemplify the viability of unsupervised and semi-
supervised approaches in complex, real-world environments. N-BaIoT excels in high-
fidelity, device-specific modeling, offering fine-grained detection at low inference cost.
Whisper, in contrast, emphasizes generalizability and lightweight deployment by lever-
aging statistical signal processing in the frequency domain. A key advantage of both is
their minimal reliance on labeled data, making them attractive for large-scale cybersecurity
deployments where labeled anomalies are scarce.

Despite their strengths, several challenges remain. Deep autoencoders, as black-box
models, often lack interpretability, limiting their use in environments where explainability
is critical. Moreover, the scalability of per-device training becomes a concern as IoT de-
ployments scale into millions of devices, necessitating distributed or federated solutions.
Frequency-domain methods, while efficient, may require careful tuning of signal trans-
formation parameters and thresholds for robust deployment across heterogeneous traffic
patterns. Nonetheless, these techniques establish a strong foundation for adaptive threat
monitoring, particularly when integrated with rule-based systems or collaborative learning
architectures.

5.3. Challenges

Despite significant advancements in applying machine learning to network traffic
analysis and anomaly detection, several critical challenges remain that hinder real-world
deployment. Chief among these are issues related to interpretability, scalability, and
privacy preservation, all of which are essential considerations in high-stakes cybersecurity
environments.

One of the most pressing concerns is the interpretability of detection models. Many of
the techniques introduced in this survey, such as transformers, deep auto-encoders, and
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frequency-domain statistical methods, operate as opaque black boxes. Their decisions
are often not accompanied by human-understandable explanations, which makes them
difficult to audit, verify, or trust in operational settings. This lack of transparency can be
particularly problematic in scenarios such as incident response or forensic analysis, where
operators need clear justifications for alerts. Among the reviewed techniques, tree-based
models like those in [46] are among the few that offer rule-based interpretability by design.

To address these limitations, recent research has explored explainable AI (XAI) meth-
ods tailored to cybersecurity use cases. For instance, Han et al. introduced DeepAID [50],
a post-hoc explanation framework for anomaly detection that highlights which input fea-
tures contributed most to an anomaly score by comparing them against reference profiles
of normal behavior. Similarly, Jacobs et al. [49] proposed a decision tree approximation
method, which translates the behavior of complex black-box models into simplified and
interpretable decision rules. These efforts represent promising steps, yet more systematic
solutions are needed to integrate interpretability as a core design principle, rather than an
afterthought.

Scalability poses another major challenge in deploying machine learning-based se-
curity systems. As network infrastructures grow in size and complexity, especially in
the context of Internet of Things (IoT) ecosystems, machine learning models must pro-
cess high volumes of heterogeneous traffic data in real time. This introduces substantial
computational overhead for both training and inference. Traditional centralized learning
architectures are often inadequate for such workloads due to limitations in bandwidth,
latency, and compute resources.

Furthermore, per-device modeling approaches, such as those used in N-BaIoT [? ],
while effective in capturing fine-grained behavior, become impractical when deployed
across networks containing thousands or millions of devices. The training and maintenance
of distinct models for each endpoint can quickly lead to unacceptable overhead and resource
consumption.

To mitigate these issues, distributed learning paradigms have been explored. Notably,
Marfo et al. [51] apply federated learning to the anomaly detection task, enabling collabora-
tive model training across multiple devices while avoiding the need to transmit raw data.
This architecture not only enhances scalability but also opens avenues for learning across
organizational or jurisdictional boundaries where data sharing may be restricted.

Privacy and regulatory concerns further complicate the adoption of centralized data-
driven approaches. Many cybersecurity datasets are sensitive, containing user metadata or
potentially identifying information. The centralized aggregation of such data for model
training may violate privacy policies or legal regulations such as GDPR or HIPAA, depend-
ing on the deployment context. Federated learning and privacy-preserving techniques such
as secure aggregation and differential privacy offer potential solutions, though they come
with trade-offs in terms of model complexity, convergence rates, and communication costs.
Designing learning systems that are both effective and privacy-aware remains a central
open problem.

Beyond technical considerations, practical integration into operational cybersecurity
environments presents another layer of complexity. Models must be compatible with
existing infrastructure, interoperable with security information and event management
(SIEM) systems, and resilient to adversarial manipulation. Additionally, black-box models
that are difficult to debug or validate pose challenges for compliance and certification in
regulated sectors such as healthcare, finance, and energy.

In summary, while machine learning models for encrypted traffic analysis and anomaly
detection have demonstrated strong empirical performance, their adoption in real-world
environments hinges on addressing broader systems-level concerns. Future research must
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aim to develop models that are not only accurate but also interpretable, scalable, privacy-
preserving, and operationally robust. Advances in these areas will be critical for translating
academic innovations into practical, trustworthy cybersecurity solutions.

6. Adversarial Approaches

Adversarial machine learning refers to the intentional manipulation of inputs to
deceive machine learning models into producing incorrect or unintended outputs, such
as misclassifications, altered embeddings, or faulty completions. In the context of this
survey, adversarial techniques are particularly relevant, as attackers must circumvent
or mislead ML-based systems designed to detect their malicious behavior. This section
examines two primary categories of adversarial strategies: evasion attacks, which occur
during the inference phase by subtly altering inputs, and backdoor or trojan attacks, which
compromise the model during training. Additionally, we highlight several studies that
do not neatly fall into either category but offer important perspectives on emerging attack
vectors and defenses.

6.1. Evasion Attacks

Adversarial evasion refers to the class of attacks that occur during the inference
phase of a machine learning model’s lifecycle. In such attacks, adversaries deliberately
craft inputs known as adversarial examples that cause the model to produce incorrect or
misleading outputs. These inputs often involve only minimal perturbations to legitimate
data samples, such that they remain functionally equivalent or semantically similar from a
human perspective but are misclassified by the model. In the context of cybersecurity, these
perturbations may be applied to malware binaries, network traffic traces, or source code
artifacts in a way that defeats model-based detection while preserving malicious intent.

A representative example is provided by Rafiq et al. [52] in their work on evading
Drebin, a state of the art Android malware classifier. They demonstrate that the injection of
merely three semantic preserving features into a malware sample can yield a 100% evasion
rate against the original model. However, their study also suggests a promising defense:
using an ensemble of classifiers trained on disjoint feature subsets. This ensemble approach
significantly reduces susceptibility to the attack, maintaining 91% accuracy even when up
to 14 features are perturbed.

Adversarial vulnerabilities are not limited to malware classifiers. Convolutional
neural networks, frequently used in vision-based and binary analysis tasks, are also highly
susceptible to such attacks. A notable example is the black box boundary attack presented
in the literature [53], which requires no access to a model’s internal weights or architecture.
By interacting only with the model’s output predictions, the authors achieve a 95.2%
evasion success rate. This demonstrates that even without white box access, adversarial
example generation remains highly feasible. Maho et al. [53] further improve on this idea
by introducing a geometric method for adversarial perturbation that requires significantly
fewer model queries. Their technique does not rely on gradient estimation or surrogate
modeling. Instead, it iteratively refines perturbations using the structure of the model’s
decision boundary. While such techniques are tailored for vision models, their adaptation to
binary or network data domains involves different challenges such as preserving executable
semantics or protocol correctness. Future research should explore how convolutional
models trained on binary code respond to similar adversarial mechanisms, especially given
the non-visual nature of such data.

Beyond convolutional networks, graph neural networks, increasingly used for network
traffic and structural code analysis, also face evasion risks. In one study [54], researchers
investigate defenses against Nettack, a powerful adversarial attack on graph models. They
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propose a low rank approximation strategy that simplifies graph structure, thereby reducing
the attack surface. Their experiments reveal that low rank approximated graphs are more
resilient to adversarial noise, although they also discover that low rank perturbations can
still bypass these defenses. Interestingly, such low rank attacks tend to introduce more
detectable artifacts, such as anomalies in node degree distributions, offering potential
avenues for defensive filtering or anomaly detection.

Semantic preserving adversarial attacks are also demonstrated in high level code
analysis models. One line of work introduces DAMP [55], an attack framework targeting
source code level models such as code completion, vulnerability detection, and malware
classification systems. The authors show that simple code transformations like renaming
variables or reordering functions can drastically alter a model’s decision, despite leaving
program behavior unchanged. With a targeted success rate of 89%, their results emphasize
the need for robust defenses in models analyzing syntactically complex input. Furthermore,
retraining models with adversarially perturbed examples, along with outlier detection on
feature representations such as variable names, significantly improves robustness. This
demonstrates the value of adversarial training and semantic filtering in code analysis
applications.

In real world deployments, attackers are unlikely to have full access to model param-
eters or architecture. Under such black box assumptions, adversaries rely on repeated
queries to infer model behavior and craft successful attacks. This query based threat
model is explored in several works. One proposed framework [56] uses a stateful detection
mechanism based on nearest neighbors and autoencoder based similarity metrics to track
the distribution of input queries. By measuring the distance between new queries and
prior ones, the system flags repetitive or highly similar queries that may indicate ongoing
adversarial probing. Researchers report that a large number of suspicious queries are
detected well before a successful adversarial example is produced. While this detection
approach is particularly effective for black box attacks, the authors also highlight the need
for better defenses against white box attacks, which remain a significant open challenge.

Taken together, the research on adversarial evasion highlights the broad vulnerabil-
ity of machine learning models ranging from binary classification and code analysis to
graph-based and vision models. These attacks not only expose blind spots in existing
defenses but also reveal important design tradeoffs between robustness, interpretability,
and performance. As adversaries continue to exploit the fragility of deep learning systems,
future defense strategies must evolve accordingly. Promising directions include ensemble
learning, model distillation, input sanitization, adversarial training, and the development
of robust representation learning techniques that prioritize semantic fidelity over surface-
level features. More importantly, detection mechanisms must account for both black box
and white box scenarios, and defensive measures should be tailored to the specific data
modality and threat model at hand.

Figure 6 provides a visual summary of several representative adversarial evasion
strategies discussed in this subsection. The figure categorizes evasion attacks into three
primary scenarios: (1) semantic-preserving feature perturbation in binary code, where
carefully crafted modifications are made to binary features without altering program be-
havior; (2) query-based black-box attacks, in which an adversary interacts with a model
through API access to infer vulnerabilities and generate adversarial inputs; and (3) struc-
tural perturbation in graph-based models, where modifications to graph topology (e.g.,
node connections or attributes) are used to evade detection. These attack vectors reflect the
diversity of evasion techniques across data modalities and model types, underscoring the
need for robust and adaptive defenses.
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Figure 6. Overview of adversarial evasion techniques targeting ML-based cybersecurity systems.
From left to right: (1) Semantic-preserving feature perturbation in binary code, (2) Query-based
black-box attacks, and (3) Perturbations on graph-structured data.

6.2. Backdoor and Trojan Attacks

Backdoor or Trojan attacks represent a stealthy form of model poisoning, where
the adversary manipulates the model during training so that it behaves normally under
standard inputs but misclassifies any input that contains a specific trigger pattern. These
attacks are particularly dangerous because the malicious behavior is often undetectable
under normal evaluation and can be precisely controlled by the attacker to produce targeted
misclassification. In security-critical applications such as malware detection or intrusion
prevention, backdoored models pose serious risks to system integrity.

Tang et al. [57] introduce TrojanNet, a versatile and stealthy framework for implanting
trojans in deep neural networks. Their approach overlays a small trojan subnetwork onto a
host model and trains it to respond only to specific trigger patterns that resemble compact
QR codes. To enhance stealth, the trigger size is kept minimal (4 → 4 pixels), and the
trojan network is trained on noisy inputs to suppress accidental activations on benign
samples. The proposed attack achieves a 100% success rate across various benchmark tasks,
demonstrating the feasibility and transferability of such general trojan mechanisms across
DNN architectures.

To defend against such threats, Gao et al. [58] propose STRIP (Sensitivity to Perturba-
tion), a black box runtime detection method. STRIP leverages the input-agnostic nature of
most trigger patterns, meaning the trigger works independently of the actual input con-
tent. By adding random perturbations to inputs and observing the entropy of the model’s
outputs, STRIP is able to differentiate between clean and trojaned samples. Benign models
typically show high output diversity (that is, high entropy) under such perturbations, while
backdoored models produce consistently low entropy outputs due to the strong influence
of the trigger. STRIP is architecture independent and deployable without access to the
model internals, making it practical for deployment in real-world systems.

Another defense strategy is input purification, exemplified by Februus [60], which
aims to remove or neutralize potential triggers from input samples at runtime. Februus
identifies the most salient region influencing the model’s prediction, masks it, and then
reconstructs the image using an autoencoder. This helps eliminate adversarial influence
while preserving task-relevant features. The approach significantly reduces the success rate
of backdoor attacks across four datasets from 100 percent to under 0.5 percent. Like STRIP,
Februus is model agnostic and does not require retraining or access to weights, offering a
viable plug and play defense mechanism.

However, both STRIP and Februus share a common limitation. They assume the trojan
trigger is input-agnostic and easily separable from benign features. This assumption is
challenged by more sophisticated attack strategies. Wang et al. [59] propose BppAttack,
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an advanced input-dependent trojan attack that generates human imperceptible perturba-
tions to avoid detection. Unlike prior approaches that use static triggers, BppAttack crafts
unique perturbations tailored to each input image, thus avoiding entropy-based detection
mechanisms like STRIP and resisting region-based defenses like Februus. Moreover, Bp-
pAttack does not require training an auxiliary trojan model, simplifying the attack process.
The authors show that this method successfully evades several state-of-the-art defenses,
including Grad-CAM and entropy-based filters.

These studies illustrate the escalating complexity in the arms race between adversarial
attacks and defense strategies. While early backdoor attacks exploited static and easily
detectable triggers, modern attacks have evolved to adopt dynamic input-sensitive patterns
that evade traditional detection. At the same time, defenders have begun integrating
robust runtime detection, semantic purification, and statistical analysis to counter emerging
threats. However, as attacks grow more sophisticated, so must the defenses.

In practice, securing ML systems against Trojan threats will require a combination
of strategies, including adversarial training, input sanitization, anomaly detection, and
regular model audits. Moreover, continued research is needed to develop universally
effective defenses that function in black box environments and remain robust under both
input-agnostic and input-aware attack scenarios. Given the rising deployment of AI models
in high-stakes applications, proactive defense against trojan attacks is not optional but
essential.

Figure 7. Illustration of backdoor and trojan attack processes in ML systems, including training-
phase poisoning and inference-time misclassification triggered by stealthy input patterns. Defensive
strategies such as STRIP and Februus are also highlighted.

Figure 7 provides a visual summary of typical backdoor and trojan attack scenarios in
adversarial machine learning. The figure highlights three main components of this threat
landscape: (1) the attacker inserts a trigger into selected inputs during the training phase,
(2) the compromised model learns to associate the trigger with an attacker-specified class,
and (3) during inference, the presence of the trigger reliably causes a misclassification,
while clean inputs are correctly classified. This illustrates both the stealth and potency of
such attacks. Additionally, the figure includes defense mechanisms such as entropy-based
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detection (e.g., STRIP) and input purification (e.g., Februus), which attempt to mitigate
these threats by analyzing model behavior at runtime or modifying input data to neutralize
potential triggers. Together, these elements reflect the cat-and-mouse dynamics between
attack strategies and defensive countermeasures in trojaned ML systems.

6.3. Data Poisoning

Data poisoning attacks target the integrity of machine learning models by manipu-
lating the training data, thereby embedding harmful behaviors or degrading predictive
performance. Unlike evasion attacks that occur at inference time, poisoning fundamentally
alters model parameters during training, making it particularly damaging in long-term
learning systems and pipelines with continuous updates. Early foundational work by
Biggio et al. [1] demonstrated that carefully crafted samples can corrupt classical machine
learning algorithms such as support vector machines. Subsequent studies extended these
concepts to deep neural networks, showing that poisoning attacks can stealthily introduce
targeted misclassification behaviors without significantly affecting model accuracy on clean
validation data.

Poisoning attacks are commonly categorized into dirty-label and clean-label variants.
Dirty-label attacks assume the adversary can tamper with labels, such as flipping benign
samples to malicious classes or inserting mislabeled training points. Mei and Zhu [2]
viewed poisoning through the lens of machine teaching, computing optimal poisoning
samples to efficiently steer the learner. In contrast, clean-label poisoning assumes that labels
remain correct, forcing the attacker to modify only the features. Clean-label attacks are
highly stealthy because they resemble legitimate data, yet can induce feature collisions or
decision-boundary shifts. Shafahi et al. [4] introduced clean-label “Poison Frogs,” showing
that feature-space alignment alone can cause targeted, hard-to-detect misclassification in
deep networks. Turner et al. [5] further showed that clean-label poisoning can embed subtle
“triggers” mirroring backdoor behaviors while keeping ground-truth labels unchanged.

Cybersecurity presents unique challenges for poisoning defenses. Real-world security
data sources, including network telemetry, malware corpora, and IDS logs, often originate
from untrusted endpoints or distributed monitoring agents. Thus adversaries may subtly
inject malicious artifacts during data collection or labeling. Steinhardt et al. [3] demon-
strated that seemingly minor perturbations can shift decision boundaries with surprisingly
small poisoning budgets, raising concerns for large-scale security monitoring systems.
Furthermore, threat intelligence feeds and malware-sharing platforms create opportunities
for sophisticated adversaries to seed poisoning samples intentionally or inadvertently,
particularly in automated retraining environments.

Defensive methods aim to detect and filter malicious data or ensure model robustness
against such contamination. Influence functions [6] attempt to identify training points
disproportionately impacting model predictions, flagging potential poisoning samples.
Data sanitization and clustering techniques can remove outliers or identify anomalous
feature distributions prior to training. In distributed learning scenarios, such as federated
learning for security analytics, Byzantine-resilient aggregation methods such as Krum and
Bulyan [7,8] filter malicious client gradients by rejecting outliers during model update
phases. Differential privacy methods [9] introduce noise during training, making precise
gradient manipulation more difficult, though at the cost of utility in high-dimensional
security tasks.

Despite these advances, defending against poisoning remains difficult due to high data
heterogeneity and adversary adaptability. Clean-label attacks are particularly insidious
in malware and network intrusion detection tasks, where natural variability in binary
features or traffic behaviors complicates anomaly-based filtering. Moreover, systems that
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continuously retrain models on streaming security data amplify the risk of long-term
poisoning accumulation. Future directions include robust self-supervised security learning
pipelines, certifiably robust training for streaming datasets, and dynamic trust scoring for
decentralized data contributors. In summary, poisoning represents a critical and evolving
threat to machine learning-enabled cybersecurity, particularly as automated pipelines and
online learning become more prevalent.

6.4. Model Extraction and Privacy Attacks

Model extraction and privacy attacks exploit model access interfaces to replicate
proprietary models or infer training data properties. Tramèr et al. [10] first demonstrated
that commercial machine learning APIs are vulnerable to extraction via adaptive querying,
allowing adversaries to approximate decision boundaries and steal models with high
fidelity. These attacks undermine intellectual property protections, enabling adversaries
to duplicate expensive security models such as malware classifiers or phishing detectors.
Extraction also provides a precursor to further attacks, as a cloned model can be used
offline to craft targeted adversarial examples.

Beyond functional replication, privacy attacks reveal sensitive information contained
in training data. Early work by Fredrikson et al. [13] showed that logistic regression models
could leak sensitive patient attributes via inversion. Shokri et al. [11] formalized mem-
bership inference attacks (MIAs), demonstrating that adversaries can determine whether
specific samples were used during training. For cybersecurity models trained on sensitive
enterprise logs, traffic telemetry, or malware signatures, such leakage may reveal internal
threat data or proprietary defense behaviors. Recent work by Carlini et al. [12] showed
that MIAs can be derived from first principles and extended to modern deep networks,
reinforcing that privacy risk persists across architectures and domains.

Real-world cybersecurity systems magnify these risks because models are often de-
ployed in cloud services, SOC pipelines, and federated monitoring architectures. Attackers
may access security models via threat intelligence APIs, endpoint detection and response
(EDR) platforms, vendor dashboards, or packet inspection appliances. Even limited query
feedback, such as scores or confidence rankings, can accelerate extraction or MIA feasibility.
Meanwhile, federated and collaborative frameworks expose gradient pathways that may
disclose training data through gradient leakage [14]. Cybersecurity telemetry, being highly
sensitive and proprietary, amplifies the consequences of such leakage.

Defense mechanisms span interface restrictions, privacy-preserving learning, and
cryptographic safeguards. Confidence masking, quantization, and randomized response
degrade information leakage but may weaken detection accuracy or analyst trust in outputs.
Differential privacy [9] offers strong formal guarantees, though utility degradation remains
non-trivial for complex security tasks. Secure aggregation protocols [14] and federated
learning frameworks [15] reduce exposure of raw gradients, yet remain vulnerable to
adaptive and collusion-based threats. Meanwhile, rate limiting, perturbed access logging,
and watermarking of model outputs aim to identify or deter extraction attempts in MLaaS
settings.

Despite progress, achieving strong confidentiality for ML-based security systems
remains unsolved. Cyber defense models must process high-volume, high-sensitivity
telemetry while providing actionable results with low latency. This creates a trade-off:
stronger privacy constraints increase resilience but can delay threat detection or reduce
fidelity. Future research must address robust privacy-preserving architectures that scale to
streaming real-time detection, integrate secure enclaves and hardware security modules,
and provide certified robustness against extraction and inference attacks. As security
functions increasingly rely on shared intelligence, cross-organization collaboration, and
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federated defense, preserving model confidentiality and training data privacy will remain
central to trustworthy ML-enabled cybersecurity.

6.5. Evolving Challenges and Defense Strategies

The domain of adversarial attacks is evolving rapidly, with increasingly sophisticated
methods targeting machine learning systems. For example, STRIP was initially proposed as
a state of the art runtime defense against trojan attacks, but was later outmaneuvered by the
BppAttack [57,59], which introduced human imperceptible, input dependent perturbations
that evade entropy based detection strategies. These developments reflect a growing trend
toward generalized frameworks for both attack and defense, emphasizing architectural
independence and adaptability.

However, for cybersecurity practitioners, generalized solutions alone may not provide
sufficient confidence in the robustness of deployed models. Effective security requires tai-
loring defenses to specific model architectures and application contexts. As discussed in the
malware detection section, implementation choices such as the use of convolutional models,
transformers, or graph neural networks significantly influence a model’s susceptibility to
adversarial manipulations. Practitioners must possess not only a general understanding of
adversarial tactics but also deeper, context specific expertise to deploy resilient systems.
Tools such as the stateful detector proposed in [56] offer interpretable, runtime metrics to
identify suspicious query behaviors and inform dynamic security policies.

The rise of large language models introduces additional complexities. Derner et al. [61]
present a comprehensive taxonomy of malicious uses of LLMs, highlighting risks such as
automated malware generation, phishing content synthesis, and model misuse for social
engineering. These capabilities lower the technical threshold for attackers, expanding the
pool of potential threat actors. As LLM architectures such as GPT evolve over time, their
exploitable behaviors also change, creating a moving target for defenders.

In this context, cybersecurity professionals must extend their threat modeling exper-
tise to LLM based systems. Ensuring robust safeguards such as fine tuned guardrails,
adversarial robustness evaluation, and responsible model deployment practices is essential.
Moreover, continuous monitoring and red teaming are necessary to track and respond to
emerging attack vectors as models are updated or refined.

In summary, adversarial machine learning continues to present evolving challenges
and opportunities. Achieving real world security for machine learning applications de-
mands a combination of general awareness, domain specific insight, and proactive collabo-
ration between cybersecurity and artificial intelligence communities.

7. Future Research Directions

Despite impressive progress across malware detection, network anomaly detection,
and adversarial machine learning, many critical challenges remain unresolved. The evolv-
ing threat landscape, growing complexity of deployed machine learning models, and
increasing regulatory demands call for a deeper investigation into methods that are not
only accurate but also secure, interpretable, and scalable. Based on the comprehensive anal-
ysis presented in this survey, we outline several promising directions for future research.

Few-Shot and Zero-Shot Malware Detection: A recurring limitation identified across
malware detection studies is their reliance on many-shot classification settings. However,
real-world environments often feature new or rare malware families for which labeled
data is sparse or unavailable. Developing ML systems capable of few-shot or zero-shot
generalization, potentially through meta-learning, prototype networks, or contrastive
learning, remains an open challenge. Incorporating self-supervised pretraining objectives,
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such as control-flow prediction or semantic embedding alignment, may further enhance
generalizability to novel threats.

Transfer Learning Across Modalities: While transfer learning has proven effective in
natural language and vision domains, its applicability to low-level code analysis, binary
classification, and network security is still underexplored. Questions remain regarding how
pretrained representations from domains like NLP or CV can be adapted to code semantics
or encrypted traffic flows. For example, can models trained on source code reliably enhance
binary-level classifiers? Investigating transferability between textual, visual, and binary
modalities could improve cross-domain robustness and reduce reliance on task-specific
datasets.

Standardized Evaluation of Adversarial Robustness: The lack of standardized bench-
marks for evaluating robustness against adversarial attacks is a persistent gap. Unlike
in computer vision or NLP, the adversarial threat landscape in cybersecurity varies sig-
nificantly by modality and attacker capability (e.g., binary manipulation vs. API query
attacks). Future work should develop unified evaluation frameworks, robust metrics, and
threat models that reflect the practical adversarial risks encountered in malware detection,
anomaly detection, and traffic analysis. Establishing such standards would also aid in
comparative studies of defense methods.

Interpretable and Trustworthy Detection Models: Interpretability remains a major
barrier to the adoption of deep learning in operational cybersecurity environments. Black-
box models like transformers and autoencoders often lack mechanisms for explaining
predictions in human-readable form. This limitation impedes forensic analysis, security
policy tuning, and compliance reporting. Advancing post-hoc explanation methods (e.g.,
DeepAID, model distillation) and developing inherently interpretable models (e.g., decision
tree surrogates, attention visualization) is a crucial area for future work. Large language
models also offer new opportunities in this space: their generative capabilities could be
used to translate model outputs into contextualized, natural language justifications.

Federated Learning for Privacy-Preserving Security: As IoT deployments grow, so
too do concerns about privacy, bandwidth, and data ownership. Federated learning offers
a promising approach to collaboratively train models without centralized data aggrega-
tion. However, applying FL in security contexts introduces new challenges, including
heterogeneous data distributions, variable device capabilities, and adversarial participation.
Research is needed to develop robust and communication-efficient FL algorithms tailored
for security-critical domains, and to understand the trade-offs between local specialization
and global generalization in anomaly detection or malware classification tasks.

Balancing Model Complexity and Attack Resilience: Several studies have noted that
increased model complexity (e.g., deeper networks or high-rank GNNs) can make systems
more vulnerable to adversarial attacks. Conversely, models approximated with lower
complexity (e.g., low-rank graph approximations) may offer improved robustness at the
cost of expressiveness. Future research should explore this trade-off more systematically.
What types of architectural simplification actually improve security? Can ensembles of
simpler models outperform complex monoliths in adversarial settings? Quantifying the
relationship between model sophistication and attacker effort could help guide defensive
design.

Securing Foundation Models and LLMs in Cybersecurity: Large foundation models,
particularly LLMs, are increasingly being integrated into cybersecurity workflows-for
example, to assist in vulnerability triage, generate security reports, or automate detection
rules. However, their general-purpose nature and evolving behavior present unique
security risks. Malicious actors may exploit LLMs for code generation, phishing, or prompt
injection. Future work must explore how to harden LLMs against misuse, including red
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teaming, adversarial prompting detection, and fine-tuning strategies that embed security
domain knowledge. Additionally, LLMs could be leveraged as tools to interpret opaque
ML decisions or assist in crafting human-readable security explanations.

Toward Holistic, Multi-Layered Defense Architectures: Finally, future work should
focus on integrating diverse ML models into layered defense architectures that combine
anomaly detection, signature-based systems, and runtime interpretability mechanisms.
Such hybrid systems could incorporate statistical detectors (e.g., Whisper), transformer-
based classifiers, and query anomaly monitors (e.g., stateful detection) in a coordinated
framework. This approach would allow defenses to span different temporal and semantic
resolutions, improving robustness against multi-phase and polymorphic attacks.

Overall, future research at the intersection of machine learning and cybersecurity must
expand beyond improving classification accuracy. It must address practical deployment
constraints, regulatory concerns, and adversarial resilience. By developing interpretable,
generalizable, and secure ML systems, researchers can ensure that the benefits of intelligent
security technologies are realized without compromising trust, privacy, or robustness in
critical applications.

8. Conclusions

The intersection of machine learning and cybersecurity represents a dynamic and
rapidly evolving research frontier. As this survey has shown, machine learning techniques
are increasingly central to both defensive and offensive applications in cybersecurity,
powering tasks such as malware detection, anomaly detection, and traffic classification,
while also introducing new attack surfaces through adversarial manipulation. The dual use
nature of machine learning presents both immense opportunities and complex challenges
for securing modern digital infrastructures.

Throughout this paper, we have examined a wide range of machine learning models
and algorithms used across various security domains, highlighting their strengths, limi-
tations, and underlying assumptions. Special attention was given to adversarial machine
learning, including evasion, poisoning, and backdoor attacks, which expose critical vulner-
abilities in model behavior and training pipelines. We also discussed privacy risks such
as membership inference and model extraction, particularly in distributed and federated
learning environments.

In addition to reviewing technical advances, this survey identified key challenges
related to model interpretability, scalability, data availability, and privacy. These challenges
remain open areas for future research and have practical implications for real world deploy-
ment. While recent efforts have made progress, such as the development of interpretable
anomaly detectors, secure federated frameworks, and robust adversarial defenses, there is
a pressing need for solutions that balance performance with trustworthiness, transparency,
and ethical responsibility.

Ultimately, our goal is to provide researchers, practitioners, and students with a
comprehensive and accessible overview of how machine learning is shaping the future of
cybersecurity. By synthesizing both foundational concepts and recent advances, this survey
aims to support the development of more resilient, intelligent, and secure systems in an
increasingly connected world.
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