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Abstract—Today’s web applications feature the proliferation of

third-party JavaScript inclusion, which incurs a range of security

risks. Although attack strategies by manipulating third-party

JavaScript files have been widely investigated, the adverse impact

caused by third-party JavaScript inclusion and caching does not

receive much attention. Specifically, when a malicious script is

cached, it can revive and bite every time when a user visits any

website that includes it, leading to a much worse effect of the

attack. In this paper, we present the first comprehensive study

on Alexa top one million websites to investigate how likely third-

party JavaScript inclusion and caching can make an attack large-

scale and long-lasting, and further to uncover insecure practices

that carelessly or inadvertently exacerbate the attack impact. We

also discuss potential solutions to improve current practices to

minimize the security risk associated with third-party JavaScript

inclusion and caching.

I. INTRODUCTION

It has become a common practice for a website to include
third-party JavaScript libraries on the Internet. Many service
providers, such as jQuery and Google Analytics, create and
provide third-party JavaScript libraries for the Internet to use.
However, loading third-party scripts is potentially dangerous
as they gain the same privileges as local scripts of the webpage
during the execution [1], which yields to a range of web
attacks, such as cross-site scripting (XSS) [2], [3], cross-site
request forgery (CSRF) [4], and cross-site script inclusion
(XSSI) [5].

Typically, resources from different websites should be iso-
lated from each other to avoid potential cross-site attacks.
Nevertheless, if two websites include the same third-party
scripts, they become correlated to each other. Consequently,
they will face the same risks if the third-party scripts are
exposed to attacks mentioned above. Further, such a practice
produces an inadvertently negative impact from the security
perspective when it meets the browser caching mechanism,
which saves previously fetched web resources at local storage
to accelerate website loading performance. In particular, suc-
cessfully compromising a third-party script is usually a one-
shot deal and only limited websites may be affected. But if
the compromised script is cached, it can be loaded locally
whenever a user visits any website that includes the same
script. In this way, caching such a script can in fact make
the attack impact both large-scale and long-lasting.

For example, Alice goes to a coffee house and connects to a
free public WiFi network, which is set up by Bob, an attacker.

Alice knows that a public free WiFi may be insecure, and thus
she visits websites cautiously and avoids inputting sensitive
information like her password. Nevertheless, if Bob is able
to impersonate the third-party JavaScript sever and sends a
modified, malicious third-party JavaScript file to Alice, Bob
can generate a post-attack effect. Specifically, this malicious
script will be cached by the browser. The next day, when Alice
connects to a secure network and inputs her password to any
website that includes the same script. The cached malicious
script will revive and steal the password from Alice.

This example shows that third-party JavaScript inclusion
and caching opens a door for indirectly compromising a
website. However, existing research mainly focuses on attack
strategies that take advantage of the vulnerability of JavaScript
to successfully compromise users’ privacy [6]–[10]. The
adverse impact caused by third-party JavaScript inclusion and
caching seems not receiving as much attention. Nevertheless,
such an impact should not be left untended, but be contained or
minimized. According to our study on Alexa top one million
websites, we find that as many as 824,290 websites include
third-party scripts, and a third-party script can be included in
up to 504,692 websites. This indicates that the aforementioned
attack example could be common for Internet surfing. Further,
our study reveals that 51.04% third-party scripts are set to
cache for more than 100 days, indicating that this attack may
impose a long-lasting effect on victims.

Hence, rather than presenting a particular attack against
a third-party script, we provide the first comprehensive
Internet-wide study to evaluate current practices of third-party
JavaScript inclusion and caching from two perspectives:

• Attack Scale: Websites are becoming heavily correlated
due to inclusion of widely-used third-party scripts. The
transitivity of the inclusion (i.e., a script may include an-
other script, which further includes more) may complicate
the correlations between websites. It is essential to track
each third-party script to quantitatively understand how
current inclusion practices can inadvertently increase the
potential scale of an attack launched from a cached script.

• Risk Duration: Caching is a mechanism primarily de-
signed for efficiency but not for security. As caching may
allow a malicious script to survive in a local browser for
quite a while, it is necessary to revisit current Internet
practices of third-party JavaScript caching setting from



the security perspective.

In this study, we meet following challenges and propose
corresponding techniques to address them.

(1) A website may indirectly include a third-party script
(e.g., a website includes a third-party script J1, which further
includes another one J2). Indirectly included scripts compli-
cate the inclusion relationships. We must be able to identify
all indirectly included scripts and track the inclusion relation-
ships between different scripts. To solve this, we develop a
customized, automated toolkit on top of Chromium [11] that
can intercept the requests and responses between clients and
servers, and exactly track the scripts that initiate each request.
Further, we define two different tree structures to capture the
inclusion relationships between websites and scripts.

(2) When a third-party script expires in the cache, the
browser needs to check whether the script on the server is
updated or not. If updated, the browser fetches the new version
from the server, otherwise it continues using the old script.
Therefore, rather than just evaluating the expiration time of the
script, it is necessary to measure its life time, which is defined
as the time duration that a script remains unmodified on the
server. However, it’s difficult to exactly predict when a script
will be updated in the future. We propose a time bounding
technique that can accurately bound the life time to solve this.

We study the third-party JavaScript inclusion and caching
of Alexa top one million websites by collecting all associated
scripts and caching configurations in HTTP headers1. We find
that the Internet has largely overlooked the risk of caching
third-party scripts and identify careless, insecure practices. Our
major findings can be summarized as follows.
• Complicated and insecure inclusion relationships: We
find that third-party JavaScript inclusions are quite compli-
cated and intricate. Our study indicates that 56.84% websites
have indirectly included third-party scripts, and the recursive
inclusion achieves the maximum height of 18. Such intricate
inclusion relationships substantially complicate the third-party
script management and confuse website developers. In par-
ticular, we find that there are indeed a number of websites
(89,723) that try to relocate included third-party scripts on
local servers, such that browsers can load these scripts from
their servers to reduce security threats. However, as many as
13,746 (15.32%) of them neglect to store at least one indirectly
included third-party script on local servers.
• Poor maintenance of third-party libraries: A well-
maintained third-party script should be updated in a timely
manner. Nevertheless, we find that 43,665 third-party scripts
have not been updated by third-party providers for at least
two years. Because the browser reuses the stale cached script
unless it is updated on the server, rarely updated third-party
scripts can advance the adverse impact of the attack launched
from a cached third-party script.

1Note that HTTPS is a version of secure HTTP communication and has the
same header information. We use the HTTP header to indicate either HTTP
or HTTPS header unless otherwise specified throughout this paper.

• Non-HTTP-conforming and risk-incurring settings of

expiration time: HTTP 1.1 requires that the expiration time
should be set no more than some small fraction of the life
time (the recommended typical setting is 10% [12]). However,
our study reveals that the expiration time of at least 10.65%
third-party JavaScript files is even 10 times greater than the
life time. This can significantly increase the adverse impact of
third-party JavaScript inclusion and caching.

II. PRELIMINARIES

A. Third-Party JavaScript and Security

Client-side JavaScript has been extensively used in modern
web applications, since it allows the source code to be loaded
and executed at the client’s browser, thus alleviating web-
server workloads and achieving fast, responsive interactions
with users. In particular, developers can enrich the websites
by using the <script> tag to include a third-party script.

Despite their popularity, third-party JavaScript may incur
a range of security issues [2], [3], [5], [13]–[18]. Further, if
an attacker is able to inject malicious codes into the cached
script, the script can be executed whenever a user accesses
any website including the script. This, in turn, enables the
attacker to launch attacks of password interception, privacy
tracking [19], and phishing [20].

B. Browser Caching Policy

Today’s web browsers all come with the resource-caching
mechanism [21], which caches web contents in local storage
to reduce the page loading time for the next-time visit. The
essence in cache management for a browser is to decide when
it should update the cache to ensure that the displayed web
content is up-to-date. This is generally determined by metrics
in HTTP headers in the following two categories.
• Client-side metrics: Such metrics describe how a web

resource (e.g., a webpage, script or image file) is cached in
the local storage of a browser. They include Expires in
HTTP 1.0 and Cache-Control in HTTP 1.1. Expires
is a simple timestamp to indicate when the resource expires.
Cache-Control includes a number of metrics, including
max-age, no-cache, no-store, must-revalidate,
and immutable. max-age is most frequently used to
state the maximum amount of time in seconds that the re-
source stays fresh in the cache. Other metrics included in
Cache-Control refine the behavior of JavaScript caching.
• Server-side metrics: Etag and Last-Modified are the

signature and the last modified time of a web resource on
the server, respectively. At the client, when a cached resource
expires (based on client-side metrics), the client browser sends
an HTTP request with the values of the previously stored
Last-Modified and ETag to the server. The server then
compares these values with current values of both metrics to
check whether the resource is modified. If modified, the server
returns the latest version; otherwise, it returns a message of
“304 Not Modified”.



III. UNDERSTANDING THE ADVERSE IMPACT

In this section, we first use an attack example to discuss the
adverse impact of third-party JavaScript inclusion and caching,
and then present the objectives of the research in this paper.

A. Attack Example

JavaScript caching indeed reduces webpage loading time;
on the other hand, however, it incurs the security concern
of attacks across multiple websites. As an example shown
in Figure 1, sample.js at a third-party service provider
is included in websites 1⇠n. When a user visits website 1
for the first time, sample.js is retrieved from the third-
party service provider and cached in the user’s local storage.
When the user subsequently visits any of the websites 1⇠n,
the browser will simply load sample.js from the local
cache unless the cached script expires. If sample.js is
manipulated by an attacker when the user visits website 1,
the browser will run the cached, compromised sample.js
during the subsequent visits to any of the websites 1⇠n.

Fig. 1: Adverse impact of 3rd-party JS inclusion and caching.

B. Research Objectives

The example demonstrates the potential attack impact of
third-party JavaScript inclusion and caching, which consists
of three key components: (i) the initial attack that injects a
malicious version of a script; (ii) the inclusion relationships
between websites and scripts; (iii) the caching settings of
scripts in local storage.

1) The Initial Attack: The strategies of the initial attack
has been widely investigated in the security community [7],
[9], [10]. In particular, such attacks include client-side at-
tacks that utilize vulnerabilities existing in a browser to
access cached files and modify their contents [10], server-
side attacks that try to compromise the script hosted in the
third-party server, such as third-party domain re-registration
[7] and direct host compromising [9], and in-transit attacks
that inject malicious scripts by exploring the communica-
tion vulnerabilities between a browser and a server [6],
such as man-in-the-middle attack (MITM) using rogue WiFi
APs [8]. An attacker can force the refresh of a cached
script and deliver a malicious version of the script (e.g.,
using <new Image.src="URL/to/malicious.js">).
Recent research [22]–[25] also reveals that when HTTPS is
used, although modern browsers always warn users of invalid
certificates under in-transit attacks, more than 50% users still
click through the warning to visit the corresponding websites.

However, as shown in Figure 1, a compromised script can be
cached and come to bite later.

2) Inclusion Relationships and Caching Settings: The
website-JavaScript inclusion relationships and caching settings
are largely determined by the current Internet practices. The
website-JavaScript inclusion relationships have a scale con-
sequence of an attack. e.g., a large number of website can
be vulnerable when they include the same malicious script
(e.g., a large n in Figure 1). Caching settings cause a time
consequence of an attack. e.g., a very long caching duration
of a malicious script makes an attack long-lasting.

Although such negative consequences depend on the success
of an initial attack, we can never focus solely on defending
against the initial attack and ignore the fact that inclusion
relationships and caching settings may further advance the
attack. To this end, we aim to propose strategies to enable
an Internet-wide study. Our objectives are twofold: (i) to
quantitatively and systematically evaluate current practices of
third-party JavaScript inclusion and caching from scale and
time perspectives; and (ii) uncovering insecure practices that
inadvertently increase the scale or time, thereby escalating a
successful initial attack.

IV. METHODOLOGY

In this section, we present two tree-based structures to
systematically characterize the relationships between websites
and JavaScript files.

A. JavaScript Classification

The inclusion relationships between websites and third-
party scripts are complicated on today’s Internet. For example,
a webpage can include a script, which also includes multiple
scripts that further include more. We classify scripts included
in a website based on two properties: (i) local or third-party
scripts, depending on where scripts are hosted; (ii) directly or
indirectly included scripts. In what follows, we describe how
to track all directly and indirectly included scripts according
to their inclusion relationships.

B. Inclusion Relationships

Fig. 2: Example of JavaScript Inclusion Tree.

As discussed, a JavaScript file may be included directly
or indirectly by a website. Because of indirect inclusion, the
website may contain multiple levels of recursive inclusions
among scripts. As long as a third-party script is included in
any level, the website may be exposed to the security risk



of caching a compromised version of the script. We propose
two tree structures to characterize the inclusion relationships
between scripts and websites.

1) JavaScript Inclusion Tree: For each website, we use
the depth-first search algorithm to construct the JavaScript
Inclusion Tree, which fully characterizes how scripts are
included in a given website. In particular, we specify a website
as the root; all scripts included directly by the website are
added as children of the root; then for any script pair (J1, J2)
with J1 including J2, we add J2 as a child of J1. Figure 2
shows an example of the JavaScript Inclusion Tree for the
Website 1.

2) JavaScript Backtracking Tree: For each third-party
script, we use a backtracking algorithm to build the JavaScript
Backtracking Tree, which traces how a third-party script has
been included in different websites. In particular, we specify
a given script as the root. All the websites and scripts directly
including it are added as children of the root. For any child
as a script in the tree, we further add all websites and scripts
directly including it as its children, and so on. The JavaScript
Backtracking Tree is constructed recursively and is complete
when all the leaves of the tree are websites. Figure 3 gives
an example of the JavaScript Backtracking Tree of a given
JavaScript 1.

Fig. 3: Example of JavaScript Backtracking Tree.

C. Obtaining Scale Metrics from Trees
According to the two tree structures, we define two major

scale metrics to understand the adverse impact of third-party
JavaScript inclusion and caching.

• Number of scripts included in a given website: This
metric is defined as the number of third-party JavaScript files
included either directly or indirectly in a given website. A
website may be exposed to the cached third-party JavaScript
vulnerability, as long as it includes the third-party script at any
level in its JavaScript Inclusion Tree. The more the number of
scripts included in a website is, the more vulnerable it can be.
The metric is measured via the JavaScript Inclusion Tree. In
particular, for a given website, we can build its corresponding
JavaScript Inclusion Tree to track all the third-party scripts
directly or indirectly included. The metric is computed by
counting the number of non-duplicate nodes in the tree.

• Number of websites including a given script: This metric
is defined as the number of websites that either directly or
indirectly include a given JavaScript file. As discussed previ-
ously, when a cached third-party script has been compromised,
visits to all the websites including it become vulnerable. Thus,

given a third-party script, we use this metric to understand
the scale of the potential vulnerable websites on the Internet
when it is compromised. The metric is measured from the
JavaScript Backtracking Tree. Specifically, for a given script,
its JavaScript Backtracking Tree traces back all the websites
that include it. The value of the metric equals to the number
of non-duplicate leaves of the tree.

D. Obtaining Time Metrics
Time metrics present another dimension of the security

impact associated with third-party JavaScript inclusion and
caching. When a compromised JavaScript file is cached, it
remains harmful unless the cache is refreshed. As a result,
we also aim to investigate the caching duration for a script to
understand the current practices on the Internet.

As discussed in Section II-B, the caching time of a
script is determined by both client-side (e.g., Expires
and max-age) and server-side metrics (e.g., ETag and
Last-Modified). Client-side metrics indicate the maxi-
mum time a cached script remains fresh in the local storage
and server-side metrics indicate when and whether a script has
been modified.

Intuitively, a compromised script can survive in the cache
until it Expires or reaches the max-age, because the
browser only revalidates the cached script when it expires (i.e.,
to send a request to check if it is modified on the server). It
seems that the caching duration can be evaluated based on
client-side metrics Expires and max-age only.

However, this is not always the case: (1) An expired
script may still be used after revalidation with the third-
party server. In particular, when a cached script expires, the
browser sends an HTTP request with the previously stored
Last-Modified and ETag of the script to the server.
The server then checks current Last-Modified and ETag.
Many times, the script is still not changed and the server
returns a “304 Not Modified” response. Upon receiving the
response, the browser continues to keep the cached script
in local storage and resets its Expires or max-age; (2)
If a powerful MITM attacker is able to temporarily control
the entire connection between a client and a server [6], it
can modify Expires or max-age in the HTTP headers
to any arbitrary value to maximize the caching duration.
Nevertheless, a large Expires or max-age does not always
indicate a long caching duration. A user may manually make
a hard refresh to enforce the revalidation, and a web developer
may also configure the script to force the revalidation.

Therefore, both client-side metrics (Expires and
max-age) and server-side metrics (Last-Modified and
ETag) are vital to indicate the caching duration of the script.
We define two time metrics to evaluate the temporal impact.
• Local caching time of a script: This metric, which is also

referred to expiration time, indicates the time duration a script
is cached in a browser’s local storage until the browser sends
a request to check if it is modified. The value of local caching
time equals max-age in HTTP 1.1 or the time interval from
the measurement time to Expires in HTTP 1.0.



• Life time of a script: This metric indicates the time
duration that a third-party script remains unmodified in the
server. Intuitively, if a script is not modified frequently on the
server, it can be cached in the local storage of a browser for
quite a while even with a small value of local caching time, be-
cause the server always sends “304 Not Modified” responses.
We measure the life time as the time interval between two
consecutive changes of Last-Modified/ETag of a script.

1) Bounding Life Time: Local caching time of a script
can be easily measured from the metrics max-age and
Expires. Nevertheless, as a script may remain valid on a
server for hours, days, years, or even never be modified, it
is challenging to capture two exactly consecutive changes of
Last-Modified/ETag to obtain the life time. We propose
a time bounding technique to accurately bound the life time.

As a solution, we repeatedly crawling and estimate upper
and lower bounds of the life time of each script. Particularly,
we record the Last-Modified/ETag for each third-party
script during our first measurement, and try to find the
change of the Last-Modified/ETag in our subsequent
measurements. Suppose that for a third-party script, we first
capture the change of its Last-Modified/ETag in the k-
th measurement. Then, the lower bound of the life time of
the script is the time interval from its Last-Modified
in the first measurement to the (k � 1)-th measurement
time. As shown in the timeline of JavaScript 1 in Figure 4,
we record Last-Modified as JS1.LM1 during the first
measurement, and find it changes to JS1.LM2 during the
second measurement. Then, the lower bound of its life time
is the first measurement time minus JS1.LM1. Because we
can be sure that it is not modified from JS1.LM1 to the first
measurement time.
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Fig. 4: Examples: bounding the life time.

The upper bound of the life time of a script is computed
as the time interval from its Last-Modified in the first
measurement to the Last-Modified that is observed to be
changed for the first time in the subsequent measurements.
For example, JavaScript 1 in Figure 4 has the first observed
change of Last-Modified from JS1.LM1 to JS1.LM2
in the second measurement; then the upper bound of its life
time is JS1.LM2� JS1.LM1.

V. MEASUREMENT AND ANALYSIS

In what follows, we first describe the toolkit for our web
data crawling. Then we present overall JavaScript usage statis-
tics, and reveal the insecure practices.

A. Web Data Crawling
We target crawling Alexa top one million websites, which

include most popular websites on the Internet. We developed
an automatic testing toolkit that works as a headless browser
to simulate the visiting of websites. This toolkit is written in
JavaScript and developed on Chromium utilizing the Chrome
DevTools Protocol [26]. Using this toolkit, we can simulate
user visits to each website and collect essential HTTP header
information, including cache-related parameters (e.g., Expires,
Cache-Control, Last-Modified and ETag), which are impor-
tant for our study. We used a high performance computing
workstation for web data crawling. We repeated our crawling
weekly for 12 months to have a continuous and sequential
measurements on JavaScript inclusion and caching settings.

B. Third-Party JavaScript Identification
We design a method to identify whether a script is

hosted on a local or third-party server. Intuitively, we may
compare the domain names of a website and a script. If
their domains match each other, the script is considered
as local. Otherwise, the script is considered as third-party.
This method, however, may not always return the correct
results. For example, it may falsely identify a local script as
third-party when a website maintains its local resources (e.g.
scripts, and images) in an independent server, the domain
name of which is different from the website. For instance,
we find that website www.tianya.cn includes a script
static.tianyaui.com/global/ty/TY.js, which
has a different domain name static.tianyaui.com,
and can be falsely identified as third-party. Nevertheless, the
resources on static.tianyaui.com are actually created
and used by the website www.tianya.cn only.

To provide a more reliable mechanism to identify third-
party scripts, we build a host list to identify domains of third-
party JavaScript providers. Each entry in the list is the domain
of a third-party JavaScript provider. If the domain name of a
script matches no entry in the list, it will be identified as local;
otherwise, it will be identified as third-party.

We rank the domains based on their popularity, i.e., the
number of websites that include any script from the domain.
We refer to this number as frequency of references. A domain
is added to the host list as long as its frequency of references
is no less than 2. Table I shows the host list with top 5
frequencies of references from our crawling results.

TABLE I: The 5 most popular 3rd-party JavaScript hosts.

Rank Third-party JavaScript Host Frequency

1 www.google-analytics.com 601,717
2 connect.facebook.net 263,048
3 ajax.googleapis.com 190,621
4 pagead2.googlesyndication.com 171,373
5 www.googletagmanager.com 125,597

C. Overall Usage of JavaScript
We successfully crawled 970,698 websites from Alexa top

one million websites. From them, we collected 10,684,818



Fig. 5: Num. of 3rd-party
scripts per web.

Fig. 6: Num. of webs in
backtracking trees.

different scripts in total, in which 3,107,929 were identified as
third-party ones. These third-party scripts have been included
for 11,149,205 times. Nevertheless, we find that there are a
large number, i.e., 2,778,633 (89.40% of 3,107,929), of third-
party scripts are included only once. We call them singletons,
and call the rest of third-party scripts non-singletons.

Observing a large number of singletons seems to be in-
consistent with the intuition that third-party scripts should be
shared across multiple websites. We find that these singletons
are mainly due to two reasons: (i) upon the inclusion request
from a website, a third-party provider may return the client
a script with unique directory or filename dedicated to this
website (e.g., pagead2.googlesyndication.com/pu
b-config/r20160913/ca-pub-7278577707988162
.js); and (ii) a website developer or third-party provider may
also append a unique query string to the URL of a script (e.g.,
cse.google.com/cse/cse.js?cx=0178371934708
27524476:s65nylv7hj0). Because the caching policy of
a web browser identifies a script by its entire URL (including
the query string), scripts with the same content but different
domains, paths, file names, or query strings are indeed treated
as different caching entities.

Singletons are included uniquely by their associated web-
sites. In contrast, the rest 329,296 non-singletons are included
8,370,582 times. Each of these non-singletons is included in
25.42 websites on average, and 824,290 (84.92% of 970,698)
websites include at least one non-singleton. We focus on non-
singleton third-party scripts in our analysis, since singletons
are not included across websites. In the following, when we
mention third-party scripts, we mean non-singletons as they
are widely included, unless otherwise specified.

D. Scale Metrics based on Tree Structures
We present measurement results on scale metrics based on

proposed tree structures to demonstrate inclusion relationships
between scripts and websites.

1) Third-party JavaScript Deployment: We first investigate
the third-party JavaScript deployment among websites.

• Number of scripts included in a given website: This metric
is derived from the JavaScript Inclusion Tree and measures
the number of third-party scripts included in a given website.
Intuitively, a website including more third-party scripts ex-
poses a higher security risk to potential attackers. According
to our measurement, each website includes 19.29 scripts on
average, and 8.62 of them are non-singletons. Figure 5 plots
the complementary cumulative distribution function (CCDF)

of the number of local scripts, singletons, and non-singletons
included in each website. As in Figure 5, local scripts and non-
singletons have similar distributions and are widely included,
while singletons are less included.
• Number of websites including a given script: This met-

ric is calculated from the JavaScript Backtracking Tree and
describes the number of websites directly or indirectly includ-
ing a given third-party script. This metric can indicate the
maximum number of potential vulnerable websites if a par-
ticular script is manipulated. According to our measurement,
a third-party script is included in 25.42 websites on average.
Table II demonstrates the top 5 third-party scripts ranked by
corresponding numbers of websites including them. As shown,
a popular third-party script can be included in around 6%
⇠ 50% of Alexa top one million websites. (e.g. Google’s
analytics.js is included in 504,692 websites out of the
one million websites).

TABLE II: Top 5 most popular third-party scripts.

Rank Third-party script Number

1 www.google-analytics.com/analytics.js 504,692
2 pagead2.googlesyndication.com/... impl.js 127,787
3 connect.facebook.net/en US/fbevents.js 122,445
4 pagead2.googlesyndication.com/...google.js 120,620
5 pagead2.googlesyndication.com/.../osd.js 115,188

2) Multi-level JavaScript Inclusion: Our measurement re-
sults show that indirectly included third-party scripts are
common on the Internet. Specifically, according to our mea-
surement, 551,689 websites contain indirectly included third-
party scripts. In addition, all third-party scripts have been
included for 8,370,582 times in total, and 3,068,041 inclusions
among them are indirect. Our study further reveals that 56.84%
websites have heights of JavaScript Inclusion Trees larger
than 1, and the maximum height of the trees is surprisingly
as large as 18. The JavaScript Backtracking Tree tracks all
the websites that directly or indirectly include a third-party
script. In Figure 6, we plot the CCDF of the number of
websites including a script given different heights of JavaScript
Backtracking Tree. We can observe that third-party scripts tend
to be included in more websites as the height increases.

15.32% 13.35% 71.33%

Fig. 7: Statistics about the localization of 3-party JS files.

• Insecure practice: careless localization of third-party

JavaScript files. Web developers may try to store all included
third-party scripts on their local servers to reduce the security
risk raised by third-party JavaScript inclusion and caching.
During this practice, web developers must track all third-
party scripts included in their websites. Nevertheless, we



Fig. 8: Local caching time for
3rd-party scripts.

Fig. 9: Num. of webs given
local caching time.

Fig. 10: Upper and lower
bounds of life time.

Fig. 11: Num of webs (1 script
with life time > a threshold).

observe that a portion of web developers only pay attention
to directly included third-party scripts but neglect indirectly
included ones. In particular, as shown in Figure 7, we find
that 89,723 websites store all their directly included third-
party scripts on their local servers, but 13,746 (15.32% of
89,723) of them neglect to store indirectly included third-
party scripts locally. This measurement results indicate that
multi-level JavaScript inclusion makes the website security
management complicated.

E. Time Metrics Measurement

In what follows, we evaluate time metrics based on the
HTTP header information of third-party scripts.

1) Local Caching Time: As noted in Section IV-D, local
caching time can be measured from the client-side metrics via
max-age or Expires. Figure 8 illustrates the distribution
of local caching time of third-party scripts. We find that over
115,517 third-party scripts are set to be cached in a browser for
more than 10 days, and over 58,988 are set for more than 100
days. As a result, a malicious third-party script may survive in
the cache for quite a long time. Figure 9 plots the number of
websites containing at least one third-party script with local
caching time in a given interval, and shows that as many as
57.58% websites include at least one script with local caching
time larger than 180 days.
• Insecure practice: inconsistent configurations of Expires

and max-age. Although max-age can override Expires
when both metrics are presented in HTTP headers, they should
be set consistent to avoid ambiguity, i.e., local caching time
calculated from Expires and max-age should be equal
to each other [12]. According to our results, 168,317 third-
party scripts set both Expires and max-age. Nevertheless,
we find that 54,771 scripts have inconsistent Expires and
max-age. Moreover, 40,568 exhibit this difference larger
than 50% of the value of max-age. These observations imply
that web developers may be less aware of the security risk of
caching and careless when setting these metrics.

2) Life Time: Next, we proceed to measure the life time of a
third-party script, which is defined as the duration a third-party
script remains unchanged in the server. We use the estimation
method proposed in Section IV-D to bound the life time of
a third-party script. Figure 10 plots the CCDF of upper and
lower bounds of the life time for different third-party scripts.
We see from Figure 10 that at least 241,769 third-party scripts
have a life time larger than 10 days, and at least 168,072 have

a life time larger than 100 days. We are also interested in
the number of websites that include third-party scripts with
long life time. Figure 11 shows the number of websites that
include at least one third-party script with life time longer
than a given threshold. We observe that over half of websites
include at least one third-party script, whose life time is longer
than half a year. This indicates that a substantial number of
websites include third-party scripts with long life time.
• Insecure practice: poor maintenance of third-party

libraries. A well-maintained third-party script should be up-
dated in a timely manner. Nevertheless, we find that 43,665
third-party scripts have not been updated by third-party
providers for at least two years. The possible reason can be that
these third-party scripts are developed by unreliable providers
or have been rarely maintained.

3) Local Caching Time Versus Life Time: HTTP 1.1 re-
quires that local caching time should be no more than some
fraction (the recommended typical setting is 10% [12]) of the
life time to ensure a browser can timely retrieve the updated
content from a server. We further evaluate the local caching
time settings using the ratio of local caching time to the upper
bound of life time.
• Insecure practice: risk-incurring settings of local caching

time. Figure 12 illustrates the distribution of the ratios of all
third-party scripts. We observe that 29.23% scripts have ratios
larger than 10%, and 10.65% scripts even have ratios larger
than 1000%, indicating that their local caching time is im-
properly set and does not conform the HTTP 1.1 requirement.
This further worsens the long-lasting impact of an attack.

F. Joint Analysis of Scale and Time

Previous studies evaluate the adverse impact of third-party
JavaScript inclusion and caching from scale and time aspects
separately. We wonder whether a widely-included script is also
associated with a very long local caching or life time?

Figure 13 box-plots the distribution of the local caching time
of different third-party scripts as a function of the number
of websites including them (measured from the JavaScript
Backtracking Tree). We can see that the local caching time
of a third-party script increases when it is included in more
websites. For example, for third-party scripts included in more
than 10,000 websites, their median local caching time is 365
days (most famous third-party service providers set 1 year as
the local caching time, e.g. Google Hosted Libraries [27]).



Fig. 12: CCDF of local
caching time/life time.

Fig. 13: Local caching time
given including websites.

Fig. 14: Lower bounds given
including websites.

Fig. 15: Upper bounds given
including websites.

Figures 14 and 15 box-plot distributions of lower and upper
bounds of the life time as a function of the number of websites
including them. We can see that lower and upper bounds of the
life time of a third-party script both exhibit decreasing trends
as it is included in more websites. This shows that popular
third-party providers usually update their scripts in a frequent
way. Nevertheless, as shown in Figures 14, most third-party
scripts still have long life time for more than 50 days.
• Insecure practice: setting local-caching time not in accor-

dance to life time. From the security perspective, if a script
is updated more frequently (indicating a smaller life time),
its local caching time should also be set smaller to mitigate
the risk of caching compromised scripts. Unfortunately, the
current Internet practice demonstrates the opposite. Comparing
Figure 13 with Figures 14 and 15, we find that a more popular
script tends to be more frequently updated, but at the same
time tends to have a longer local caching time.

VI. IMPROVING SECURITY AND DISCUSSIONS

The measurement results have identified a number of inse-
cure practices that overlook or even increase the security risk
of third-party JavaScript inclusion and caching. We discuss
potential methods to be used by third-party service providers,
websites and browser developers to minimize the adverse
impact of third-party JavaScript inclusion and caching.

• Simplifying Inclusion Relationships and Proper Localiza-
tion. We find that third-party JavaScript inclusions are quite
complicated and intricate, that substantially complicate the
third-party script management and confuse website devel-
opers. Third-party JavaScript developers should simplify its
JavaScript inclusion relationships as much as possible. It also
becomes essential for website developers to regularly update
the JavaScript Inclusion Tree and store all third-party scripts
at local servers to minimize the security risk.

• Adequate Configurations of Caching Settings. Our results
reveal that third-party service providers tend to set caching
parameters Expires and max-age with large values. This
is both non-HTTP-conforming and insecure. We recommend
setting Expires and max-age according to the 10% rec-
ommendation in HTTP 1.1 or even smaller.

• Isolated Caching. As discussed, if a widely-included third-
party script has been manipulated by an attacker, it may
potentially infect all the websites including this malicious
script. We suggest that caching scripts for different websites
can be isolated from each other, thus containing a potentially

malicious script in the scope of a single website. Specifically,
developers may make each third-party script dedicated to a
particular website. This can be achieved by (i) giving a unique
path or file name of the script (by third-party providers) to a
particular website, or (ii) appending a query string to the URL
of the third-party script.
• No Caching over Untrustworthy Connections. A user

may face MITM attacks when connecting to an untrustworthy
public network. We suggest that a browser may never keep
any cached files over the untrustworthy connections, especially
when a user visits a website via clicking through an HTTPS
certificate warning. The browser can minimize the security risk
by disabling caching at the moment that it issues the HTTPS
certificate warning. The browser can resume users’ caching
setting (or even clean all cached contents) when it restarts.

VII. RELATED WORK

• Malicious JavaScript Injection Strategies. Our study
is motivated by the security concern that when a cached
JavaScript file is compromised, access to any website including
the same script can be vulnerable. Our work is related to
existing works [13]–[17], [28] that detail the attack strategies
to compromise a JavaScript file and inject the malicious script
into a web browser, such as MITM based manipulations [28],
the Pretty-Bad-Proxy attack [13], and modified HTTPS cer-
tificate attack [14]. Our research does not focus on designing
an attack strategy that has been well studied in the literature;
rather, we aim to assess the scope and security indication of
third-party JavaScript inclusion and caching on the Internet.
• Large-scale Measurements for Security Analysis. Network

measurement studies have been conducted in a line of works
[29]–[36] to perform the security analysis for the Internet from
various perspectives. For example, ZMap [34] developed a
fast Internet-wide scanning tool, which has enabled a wide
range of security applications, such as botnet analysis [37],
domain name system (DNS) manipulation analysis [37], and
monitoring of global censorship [38]. The research in this
paper focuses on analyzing current practices of third-party
JavaScript inclusion and caching, and identifying the security
risk. Our research is complementary to these works.
• Large-scale JavaScript Measurements on the Internet. Our

work is also related to prior measurement studies of client-
side JavaScript libraries on the Internet. For example, the
work in [39] quantified the reliability of third-party JavaScript
providers based on Alexa top ten thousand websites. In [40],



the authors measured the usage of outdated JavaScript libraries
over 133,000 websites, and revealed that a large number of
websites still use outdated JavaScript libraries. In contrast,
the scale of our measurement is larger and we point out the
insecure practices about JavaScript inclusion and caching in
today’s websites and third-party service providers.

VIII. CONCLUSIONS

In this paper, we present a comprehensive study to analyze
how current practices of third-party JavaScript deployment
and caching may exacerbate the adverse impact of malicious
scripts. We evaluate the security risk caused by third-party
JavaScript inclusion and caching from both scale and time
perspectives, and identify insecure practices on the Internet.
We also discuss potential solutions to minimize the risk. Our
study is instrumental in helping website developers to improve
the security perspectives of JavaScript management.
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