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Abstract—As wireless mobile devices are more and more pervasive and adopted in critical applications, it is becoming increasingly
important to measure the physical proximity of these devices in a secure way. Although various techniques have been developed to
identify whether a device is close, the problem of identifying the far proximity (i.e., a target is at least a certain distance away) has been
neglected by the research community. Meanwhile, verifying the far proximity is desirable and critical to enhance the security of emerging
wireless applications. In this paper, we propose a secure far proximity identification approach that determines whether or not a remote
device is far away. The key idea of the proposed approach is to estimate the far proximity from the unforgeable “fingerprint” of the
proximity. We have validated and evaluated the effectiveness of the proposed far proximity identification method through experiments
on real measured channel data. The experiment results show that the proposed approach can detect the far proximity with a successful
rate of 0.85 for the non-Line-of-sight (NLoS) scenario, and the successful rate can be further increased to 0.99 for the Line-of-sight (LoS)
scenario.

Index Terms—Far proximity identification; Fingerprinting; Channel impulse response
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1 INTRODUCTION

As mobile platforms are more and more pervasive and adopted
in critical applications, it is becoming increasingly important to
measure the physical proximity of mobile devices in a secure
way. For example, Implantable Medical Devices (IMDs) like
pacemakers may grant access to an external control device only
when that device is close enough [33]. As another example,
contactless-payment systems (like Google Wallet), which enable
users to make payments by placing a mobile device in the close
proximity of a payment terminal, may require the mobile devices
to be within several centimeters or even millimeters of the payment
terminals.

Thus, verifying the close proximity has triggered significant
attention and activity from the research community, and multiple
techniques have been proposed to achieve the efficient identifica-
tion of close proximity (e.g., [5], [7], [13], [14], [18], [32], [38]),
including the well-known distance bounding protocols and their
variants (e.g., [5], [32], [38]).

Although various techniques have been developed to identify
whether a device is close, the problem of identifying the far
proximity (i.e., a target is at least a certain distance away) has
been neglected by the research community. Meanwhile, verifying
the far proximity is desirable and critical to enhance the security
of emerging wireless applications. By enforcing far proximity,
in addition to traditional access control and cryptographic ap-
proaches, we can enhance the security of various critical wireless
applications, such as satellite communication, long-haul wireless
TV, radio, and alarm broadcasting, and Marine VHF radio for
rescue and communication services [2].

For example, GPS devices receive signals, presumably from
satellites in space, to determine their locations. Ideally, the GPS
devices could verify that received signals are from far-away
sources, to avoid being deceived by a nearby adversary’s signals.

In cellular networks, mobile phones may at times expect to receive
signals from particular cell towers. It has been demonstrated that
adversaries can set up a fake short-range cell tower to fool nearby
mobile phones [24], [40]. To avoid being deceived by such a fake
cell tower, it is desirable that mobile phones can authenticate that
the signals they receive originate from a tower at an expected,
further distance away.

Existing close proximity identification techniques (e.g., [7],
[13], [18]) qualitatively decide whether or not a target is nearby,
but they cannot be directly extended to address the far proximity
identification problem. The qualitative decision that a target is not
nearby doesn’t quantitatively guarantee that the target is at least a
certain distance away (i.e., in the far proximity).

Distance bounding protocols (e.g., [5], [32], [38] demonstrated
their success in quantitatively estimating the distance between two
wireless devices. However, they cannot be directly applied to en-
force far proximity identification. In distance bounding protocols,
a local device sends a challenge to a remote device, and the remote
device replies with a response that is computed as a function
of the received challenge. The local device then measures the
round-trip time between sending its challenge and receiving the
response, subtracts the processing delay from the round-trip time,
and uses the result to calculate the distance between itself and the
remote device. However, by delaying its response to a challenge,
a dishonest remote device can appear to be arbitrarily further from
the local device than it actually is.

In this paper, we develop a secure far proximity identification
approach that can determine whether a remote device is far
away. The key idea of the proposed approach is to estimate the
proximity from the unforgeable “fingerprint” of the proximity. We
develop a technique that can extract the fingerprint of a wireless
device’s proximity from the physical-layer features of signals
sent by the device (i.e. channel impulse response). Since channel
estimation is mandatory for all wireless systems to achieve reliable
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communications, mobile devices can easily extract a proximity
fingerprint from an estimated channel impulse response. The
proximity fingerprints are closely related to the distance between
the local and remote devices. They are easy to extract but difficult
to forge. We also develop a novel technique that uses the proximity
fingerprint to identify the lower bound of the distance between the
local and the remote devices. We further propose a fine-grained
proximity identification algorithm and derive both lower and upper
bounds of the proximity between the local and the remote devices.
Besides, we identify typical types of attacks against proposed
schemes and propose the corresponding defense approaches.

The contributions of this paper are: (1) we develop a novel
fingerprinting technique that enables the local device to extract
the fingerprint of a wireless device’s proximity from the physical-
layer features of signals sent by the device; (2) we discover the
theoretical relationship between the proximity and its fingerprint,
and we developed a technique that can use such a relationship to
estimate the lower and upper bounds of the distance between the
local and remote devices; and (3) we validate and evaluate the
effectiveness of the proposed far proximity identification method
through experiments on the real-world data. The experiment re-
sults show that the proposed approach can detect the far proximity
with a success rate of 0.85 for the non-Line-of-sight (NLoS)
scenario, and the success rate can be further increased to 0.99
for the Line-of-sight (LoS) scenario.

The rest of the paper is organized as follows. Section 2
describes our assumptions and system and threat models. Section 3
presents the proposed far proximity identification techniques.
Section 4 identifies typical types of attacks and proposes the
corresponding countermeasures. Sections 5 and 6 discuss the
experimental evaluation and related work. Section 7 concludes
this paper.

2 SYSTEM AND THREAT MODELS

To facilitate the presentation, we refer to the local device, which
verifies the proximity, as the verifier and the remote device, whose
proximity is being verified, as the prover. The verification system
consists of a verifier and a prover. Both are equipped with radio
interfaces that can transmit and receive wireless signals.

The verifier aims to determine whether or not a prover is at
least a certain distance away, and it analyzes the signals emitted
by the prover to achieve this goal. The verifier can work in both
active or passive modes. In the active mode, the verifier sends
a message to the prover to initialize the proximity identification,
and the prover cooperates with the verifier by sending wireless
signals back to the verifier to enable the verification. In the passive
mode, instead of actively sending out signals, the verifier monitors
the wireless channel to capture the prover’s signal. Once the
prover’s signals are captured, the verifier can identify the prover’s
proximity.

We assume that the prover is untrusted. The prover may
provide the verifier with fake messages and wrong configuration
information regarding its hardware and software settings, such as
device type, signal processing delay, and protocols in use. The
prover may intentionally delay its replies to the verifier’s messages
or send bogus replies at any time to mislead the verifier. However,
we assume that the verifier can receive wireless signals sent by
the prover. As the long-haul wireless applications (e.g., space
communications and TV broadcasting) usually have the stronger
LoS feature, we assume that there are no metal shields on the

straight line between the verifier and the prover to block wireless
signals from the prover.

3 FAR PROXIMITY VERIFICATION

A simple and naive method to identify whether a prover is far away
is to examine the received signal strength (RSS). A signal decays
as it propagates in the air. Thus, it seems that strong RSS indicates
a short signal propagation length and a close transmitter, whereas
weak RSS strength implies a far-away transmitter. However, a
dishonest prover can increase or decrease its transmit power to
pretend to be close to, or far from, the verifier. The root reason for
the failure of the naive method is that RSS can be easily forged.
In this paper, we discover unforgeable and unclonable fingerprints
of the proximity and propose techniques that can identify the far
proximity based on these fingerprints.

3.1 Proximity Fingerprints

Because of the multipath effect [10], a signal sent by the prover
generally propagates to the verifier in the air along multiple paths
due to reflection, diffraction, and scattering. Each path has an
effect (e.g., distortion and attenuation) on the signal traveling
on it [27]. A channel impulse response characterizes the overall
effects imposed by the multipath propagation, and it reflects the
physical feature of a wireless link [10]. Because it is difficult to
change the physical feature, channel impulse responses have been
used as “link signatures” to uniquely identify the wireless link
between a wireless transmitter and a receiver [6], [27], [43].

Figure 1 (a) shows a simple example of multipath propagation.
The signal sent by the prover is reflected by an obstacle (i.e., a
building), and thus it travels along Path 1 (the direct path from
the prover to the verifier), and Path 2 (the reflection path). The
signal copy that travels along one path is usually referred to as a
multipath component [10]. Let r1 and r2 denote the multipath
components that travel along Path 1 and Path 2 respectively.
Figure 1 (b) is an example of the corresponding channel impulse
response, which shows that r1 arrives at the verifier first and the
peak of the signal amplitude of r1 is Ar1, and r2 arrives after r1,
and its peak is Ar2.

Intuitively, if the prover increases (decreases) the transmit
power, both Ar1 and Ar2 will increase (decrease), but the prover
cannot adjust its transmit power such that it arbitrarily manipulates
only one of Ar1 and Ar2, because it is difficult for the prover
to identify and modify the physical paths over which multipath
components propagate [27]. On the other hand, the length of the
signal propagation path is closely related to the amplitude of the
received signal. A far-away prover results in weaker Ar1 and Ar2
than a close prover. Based on this intuition, we give the definition
of proximity fingerprint below.
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Fig. 1. An example of the multipath effect.
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Definition 1 (Proximity Fingerprint) Let Ar1 and Ar2 be the am-
plitudes of the first and the second received multipath components,
respectively. The proximity fingerprint f is the ratio ofAr1 toAr2,
i.e., f = Ar1

Ar2
.

In Lemma 1, we prove that increasing or decreasing the
transmit power does not affect the proximity fingerprint.
Lemma 1. Let Pt denote the transmit power. Let Pr1 and Pr2 be

the amplitudes of the first and the second received multipath
components. If the prover changes Pt to nPt (n > 0), then
both Pr1 and Pr2 will change to

√
nPr1 and

√
nPr2.

Proof: The amplitude Pr of a received signal can be modeled
as [10]

Pr =

{ √
Ptk(d0d )α d > d0,√
Ptk d ≤ d0,

(1)

where Pt is the transmit power, d is the length of the path along
which the signal propagates from the transmitter to the receiver
(d > d0), k is a scaling factor whose value depends on the
antenna characteristics and the average channel attenuation, d0
is a reference distance for the antenna far-field, and α is the
path loss exponent. The values of k, d0, and α can be obtained
either analytically or empirically [10]. Assume d1 > d0 and
d2 > d0. Thus, according to Equation 3.2.1, Pr1 and Pr1 can
be approximated by

Pr1 =

√
Ptk(

d0
d1

)α, Pr2 =

√
Ptk(

d0
d2

)α, (2)

where d1 and d2 are the lengths of the path along which the first
and the second received multipath components travel respectively.
If Pt is changed to nPt (n > 0), then Pr1 and Pr2 will
accordingly change to

√
nPr1 and

√
nPr2, and the proximity

fingerprint (the ratio of Pr1 to Pr2) remains the same. �
Note that due to the bandwidth limitation, the verifier can

only distinguish two signals when their arrival time difference is
larger than the resolvable time (i.e., 1/B, where B is the channel
bandwidth). Therefore, Pr1 and Pr2 may not be the amplitude of
received signals from exact first and second paths. Nevertheless,
Lemma1 always holds as long as the prover cannot modify Pr1
and Pr2 simultaneously.

Key Features of Proximity Fingerprints: Lemma 1 shows
that the prover cannot adjust its transmit power to arbitrarily
manipulate the proximity fingerprint, but it appears that an attacker
(i.e., a dishonest prover or a third-party adversary against benign
provers) could affect the proximity fingerprint by intentionally
placing a reflector nearby the prover to generate a fake path, in
addition to the direct signal path from the prover to the verifier.

However, at the verifier’s view, the direct and fake paths are
still one unresolvable path if the difference between the arrival
times of the signals traveling on both paths is much smaller
than the symbol duration, which is the transmission time of a
wireless physical-layer unit [10]. To be successful, an attacker
has to place the reflector far enough away from the prover (i.e.,
δc meters, where δ is the symbol duration and c is the speed of
light [10]), such that the difference between the two path arrival
times is resolvable at the verifier. More crucially, at this distance
the attacker must make sure that the prover’s signal can exactly hit
his reflector and be bounced back to the target verifier. However,
it is quite uncertain for the prover’s signal to be delivered to the
reflector, then reflected by the reflector to the verifier due to the
random scattering effect caused by long distance propagation [10].

For example, GPS satellites have a typical symbol duration
of 0.01 second [1]. It is impractical for the satellite’s signal to
exactly hit a reflector that is 3,000,000 meters away, and moreover
be reflected by the reflector to hit a target GPS navigation device
on earth.

To summarize, proximity fingerprints are caused by wireless
reflections somewhere, which the verifier does not need to know
and identify. The verifier can easily extract Ar1 and Ar2 from the
channel impulse response and compute the proximity fingerprint
asAr1/Ar2. Note that estimating the channel impulse responses is
a must-have function for most modern wireless systems [10], [23].
But in order for the attacker to be successfully, the attacker has to
know (1) how to pinpoint a far-away place to put a reflector or an
active wireless device, and (2) exactly where to direct the reflector
to shoot a needle in a haystack. Thus, significant practical hurdles
exist for attacking proximity fingerprints. In this way, verifiers can
easily extract proximity fingerprints, but it is difficult for attackers
to forge or manipulate a specific fingerprint.

The attacker may also launch active attacks to undermine the
verification of proximity fingerprints. In later section (4), we will
discuss these active attacks and the corresponding countermea-
sures.

Impact of Directional Antennas: When directional antennas
are used, the multipath effect may be reduced. However, direc-
tional antennas cannot provide perfect laser-like radio signals.
For example, the beamwidth of a 3-element Yagi Antenna, the
most common type of directional antenna, is 90 degrees in the
vertical plane and 54 degrees in the horizontal plane [16]. Thus,
it is not possible to completely eliminate the multipath effect,
and accordingly the multipath propagation has been also consid-
ered in designing wireless communication systems equipped with
directional antennas (e.g., [37], [42]). The proximity fingerprint
can be calculated based on a very limited number of paths (i.e.,
two paths), and thus it is compatible to wireless systems with
directional antennas in use.

Proximity fingerprint with single or many peaks: In cases
where channel has more than two resolvable peaks, we still select
the first two peaks to estimate the distance. That’s because the first
two peaks are usually largest ones in channel and more resilient to
the channel noise.

The scheme cannot be applied to the scenario where CIR
only has one peak. But such situation happens only when the
signals are transmitted through the ideal environment (e.g. free
space propagation) or within a narrow bandwidth. Practical GPS
or cellular networks do not assume free space propagation. In
addition, even the transmit signals have a narrow bandwidth
(e.g. 5MHz or 10MHz), it’s still highly likely that the CIR has
multiple resolvable peaks due to the long propagation distance
(e.g. thousands of meters). For example, if the signal bandwidth
is 5MHz, the resolvable time is about 0.2 microsecond and thus
the minimum path difference required to distinguish two peaks
is about 60 meters. Since the transmitter is usually thousands of
meters away from the receiver, it’s highly possible that there exist
two propagation paths whose distance difference is larger than 60
meters.

3.2 Far Proximity Identification Using Proximity Finger-
prints

Based on the study of proximity fingerprint, we now reveal the
relationship between the proximity fingerprint and the actual
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proximity, and we propose far proximity identification techniques
that can provide fine granularity and lower bounds on proximity
(i.e., the prover is at least a certain distance away from the verifier)
using the proximity fingerprint

3.2.1 Far Proximity Identification
To calculate the proximity of the prover, we first model the
fingerprint of the proximity. We consider signal propagation in
two typical wireless environments, i.e., the outdoor and the indoor
environments.

There are multiple signal propagation models that characterize
the path loss of wireless signals, such as the free space path
loss model, ray tracing path loss models, the simplified path
loss model, and empirical path loss models [10]. The common
feature of these models is that they all indicate that the power
of the transmitted signal decreases as the propagation distance
increases. In the channel impulse response, each resolvable mul-
tipath component is the superposition of multiple non-resolvable
signals arriving within the resolvable time. Because the empirical
path loss model is able to characterize the path loss in complex
propagation environments, we would like to apply the empirical
model to quantitatively estimate the amplitude of resolvable multi-
path component in channel response. In the following discussion,
without loss of generality, we focus on two well-known propaga-
tion models (Okumura Model [10] and ITU Indoor Propagation
Model [23]) for both outdoor and indoor environments.

We assume that there are no large metallic obstacles that can
significantly block the straight line propagation between the ver-
ifier and the prover. Thus, the first received multipath component
normally travels along the straight line due to the penetration
and diffraction-around-object effect, and the propagation distance
is approximately d meters, where d is the distance between the
verifier and the prover. The second received multipath component
travels along a reflection path. Assume that the difference between
the arrival times of the first and the second multipath components
is ∆t. The propagation distance of the second arrived multipath
component is thus d+ ∆tc meters, where c is the speed of light.

Outdoor signal propagation: One of the most common
models for outdoor signal propagation in urban, suburban, and
rural areas is the Okumura Model [10]. According to the Okumura
model, the signal path loss in decibels (dB) in urban areas can be
modeled as

L(dB) = 69.55 + 26.16 log10(fc)− 13.82 log10(hte)

− a(hre, fc) + (44.9− 6.55 log10(hte)) log10(d),

where d is the length of the path along which the signal propagates
from the transmitter to the receiver, fc is the central frequency, hte
and hre are the transmitter’s and the receiver’s antenna heights
respectively, and a(hre, fc) is a correction factor computed using
hre and fc [10]. Based on the Okumura Model, we give Lemma 2
Lemma 2. The proximity fingerprint in the outdoor environment is√

(d2d1 )
γ
10 , where d1 and d2 are the lengths of the paths along

which the first and the second received multipath components
travel respectively, γ = 44.9−6.55 log10(hte), and hte is the
transmitter’s antenna height.

Proof: The received signal power Pr can be represented as
Pr(dB) = Pt(dB) - L (dB), where Pt is the transmit power.
To facilitate the calculation, we change the unit of Pr from dB
to watt (W). The relationship between Pr(dB) and Pr(W) is
Pr(dB) = 10 log10 Pr(W). Thus, we can derive

Pr(W) = 10
1
10 (Pt(dB)−L(dB)) =

10
1
10Pt(dB)

10
1
10L(dB)

=
Pt(W)

L(W)

Similarly, we can derive L(W) as

L(W) = 10
1
10L(dB) = 10

1
10 (β+γ log10(d)),

where β = 69.55 + 26.16 log10(fc) − 13.82 log10(hte) −
a(hre, fc) and γ = 44.9− 6.55 log10(hte).

The amplitude of a signal is the square root of the received
signal power. Thus, the amplitudes Ar1 and Ar2 of the first and
the second received multipath components can be represented by

Ar1 =
√
Pr1(W) =

√
Pt(W)

10
1
10 (β+γ log10(d1))

Ar2 =
√
Pr2(W) =

√
Pt(W)

10
1
10 (β+γ log10(d2))

where d1 and d2 are the lengths of the paths along which the first
and the second received multipath components travel respectively.
Note that both multipath components have the same values for
γ and β, because they are from the same signal source (i.e., the
prover) and exhibit the same frequency fc. Thus, the proximity
fingerprint f can be written as

f =
Ar1
Ar2

=

√
(
d2
d1

)
γ
10 . (3)

According to the Okumura model, the signal path loss models
in suburban and rural areas are, respectively,

Lsuburban(dB) = L(dB)− 2[log10(fc/28)]2 − 5.4,

and

Lrural(dB) = L(dB)−4.78[log10(fc)]
2+18.33 log10(fc)−K,

where K ranges from 35.94(countryside) to 40.94 (desert). By
using the same analytical approach, we can obtain the similar
result that the proximity fingerprint in the suburban and rural areas
is
√

(d2d1 )
γ
10 . �

Indoor signal propagation: The path loss in the indoor envi-
ronment can be usually represented by the ITU Indoor Propagation
Model [23] as shown below

L(dB) = 20 log fc + λ log d+ Pf (Nf ),

where λ is the empirical path loss at the same floor, Nf denote
the number of floors between the transmitter and receiver, and
Pf (Nf ) denotes the floor penetration loss. Based on the ITU
indoor model, we give Lemma 3
Lemma 3. The proximity fingerprint in the indoor environment is√

(d2d1 )
λ
10 , where d1 and d2 are the lengths of the paths along

which the first and the second received multipath components
travel respectively, and λ is the empirical floor penetration loss
factor.

Proof: As discussed earlier, the received signal power Pr can be
represented as Pr(dB) = Pt(dB) - L (dB). By converting the unit
of Pr from dB to W, we can obtain

Pr(W) =
Pt(W)

L(W)
=

Pt(W)

10
1
10 (20 log fc+λ log d+Pf (Nf ))
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The proximity fingerprint, the ratio of Ar1 to Ar2 can be written
as

f =

√
Pr1(W)√
Pr2(W)

=

√
(
d2
d1

)
λ
10 (4)

�
Far proximity identification: Assume there are no large

metallic obstacles that can significantly block the signal propa-
gation between the verifier and the prover. The path that the first
received multipath component usually travels along (i.e., Path 1)
is roughly straight between the verifier and the prover due to
penetration and diffraction-around-obstacles features of wireless
signals [10]. Thus, d1 approximately equals to the distance be-
tween the verifier and the prover. The lower bound of d1 is given
in Lemma 4.

Lemma 4. Let d be the distance between the prover and the
verifier. We have d ≥ c

B(f
2
α−1)

, where c is the speed of

light, B is the bandwidth of the communication system, α is
the path loss exponent, and f is the proximity fingerprint.

Proof: Let t denote the time at which the prover’s signal starts
to propagate to the verifier. Let t1 and t2 denote the arrival
times of the first and the second received multipath components,
respectively. Therefore, d1 = (t1 − t)c and d2 = (t2 − t)c, and
we have the following:

d2 = (t2 − t)c = (t1 − t)c+ (t2 − t1)c = d1 + ∆c,

where ∆ = t2−t1. From Equations 3 and 4, we know that for both
the outdoor and indoor environments, the proximity fingerprint f
can be generalized by the same expression f =

√
(d2d1 )α, where

α equals to γ
10 and λ

10 for the outdoor and indoor propagation
respectively. The first received multipath component travels along
the straight line between the verifier and the prover. Hence,
the distance d between the verifier and the prover is equal to
d1. According to [10], for resolvable multiple path components,
∆ ≥ 1

B , where B is the bandwidth of the wireless communication
system. Thus,

f =

√
(
d2
d

)α =

√
(
d+ ∆c

d
)α

and we have

f ≥

√
(
d+ c

B

d
)α,

and
d ≥ c

B(f
2
α − 1)

. (5)

�
Fine-grained proximity identification: A more accurate time

difference estimation between arrivals can be obtained from the
measured channel impulse response. Figure 2 shows an example
of a real-measured channel impulse response obtained from the
CRAWDAD data set [36], which contains channel impulse re-
sponses collected in an indoor environment with obstacles (e.g.,
cubicle offices and furniture) and scatters (e.g., windows and
doors). As shown in Figure 2, the time difference between the
first and second peaks is about 75 nanoseconds. Since signals
arriving within the resolution time cannot be distinguished from
each other, the estimation error is considered as ± 1

2B , where B
is the bandwidth of the communication system. Assume the time
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Fig. 2. An example of the real-measured channel impulse response
obtained from the CRAWDAD data set

difference observed from the channel impulse response is δt, we
can model the time difference range as (δt− 1

2B , δt+ 1
2B ).

We would like to utilize such fine-grained time difference to
further refine the proximity identification. In addition, with the
range of the time difference, we can yield both lower and upper
bounds of the proximity between the verifier and the prover. As-
sume the estimated time difference is within (δt− 1

2B , δt+ 1
2B ).

We have Lemma 5 as stated below:
Lemma 5. Let d be the distance between the prover and

the verifier. d can be estimated within the range of
(
(δt− 1

2B )c

f
2
α−1

,
(δt+ 1

2B )c

f
2
α−1

), where c is the speed of light, α is

the path loss exponent, and f is the proximity fingerprint.

Proof: In the proof of Lemma 4, we generalize the proximity
fingerprint f as f =

√
d2
d1

α
, where d1 and d2 are the propagation

distance of the first and second multipath components respectively.
Since the first received multipath component approximately travels
along the straight-line between the verifier and the prover, we have
d = d1.

Assume the time difference between two multipath compo-
nents is ∆t. We have the relationship between d1 and d2 as
d2 = d1 + ∆tc, where c is the speed of light. By substituting
the relationship into the proximity fingerprint, we can derive the
distance as the following equation 6:

d =
∆tc

f
2
α − 1

. (6)

Since the time difference ∆t is within the range of (δt −
1
2B , δt + 1

2B ), where δt is the time difference observed from
the corresponding channel impulse response, we can have the
upper bound of the distance between the prover and verifier by
substituting ∆t ≤ δt+ 1

2B .

d ≤
(δt+ 1

2B )c

f
2
α − 1

.

Similarly, lower bound of the proximity can be obtained by
substituting ∆t ≥ δt− 1

2B into the equation 6.

d ≥
(δt− 1

2B )c

f
2
α − 1

.

Therefore, we have the proximity range between the prover
and the verifier as (

(δt− 1
2B )c

f
2
α−1

,
(δt+ 1

2B )c

f
2
α−1

). �
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with f = 5 the verifier can know that the prover is at least 3.01 meters
away. The suburban environment has the largest α, and with f = 5 the
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path loss exponent α

Choosing α: For the outdoor signal propagation, according
to the Okumura model, γ = 44.9 − 6.55 log10(hte), where
hte is the height of the transmitter’s antenna. If the verifier has
specific types of targets, for example, the verifier aims to verify
the proximity of a satellite, a cellular base station, or a TV tower,
then the verifier can directly compute γ by looking up the typical
values of hte from the corresponding wireless device handbooks.
Alternatively, the verifier can also get an estimate of γ by using
the typical transmitter antenna height in the outdoor environment
(e.g., the typical transmitter antenna height ranges between 1 to
200 meters [23], and thus γ approximately lies between 44.9 and
29.83). After obtaining γ, the verifier can compute α = γ

10 . For
the indoor signal propagation, α = λ

10 , where λ is the indoor path
loss factor that doesn’t rely on the antenna height and it can be
obtained through empirical experiments.

Note that the path loss exponent α for both outdoors and
indoors can be actually regarded as an attenuation factor that
reflects the attenuation caused by the propagation path. Previ-
ous studies have performed extensive empirical experiments to
measure typical values of such an attenuation factor in different
wireless environments [10]. For example, the attenuation factor is
2.0 for vacuum free space, 2.7–3.5 for urban areas, 3.0–5.0 for
suburban areas, and 1.6–1.8 for indoors [10]. In the following dis-
cussion, without loss of generality, we use these typical empirical
values of the attenuation factor as the example α. Nevertheless, the
verifier can obtain α empirically using existing readily-available
approaches (e.g., [3], [22]), and a real-measured attenuation factor
can help to improve the accuracy of the proximity lower bound
estimation.

3.2.2 Experimental Examples
Figure 3 shows the estimated lower bound of the proximity as
a function of the proximity fingerprint f . The speed of light c
is 2.99792458 × 108, and the bandwidth B is 20 Mbps. From
Figure 3, we can see that the proximity lower bound of the prover
decreases as the proximity fingerprint f increases. The indoor
environment has the smallest α, and with f = 5 the verifier can
know that the prover is at least 3.01 meters away. The suburban
environment has the largest α, and with f = 5 the verifier can
know that the prover is at least 16.59 meters away.

As mentioned, figure 2 shows an example of a real-measured
channel impulse response obtained from the CRAWDAD data set.

The channel impulse response was measured when the distance
between the transmitter and the receiver is 4.09 meters. From
Figure 2, we can see that each received multipath component leads
to a triangle in shape with a peak [27]. The second multipath
component arrives at the receiver about 75 nanoseconds after
the arrival of the first one. The proximity fingerprint is 5.6499.
The channel impulse response was measured indoors, and thus α
ranges between 1.6 and 1.8.

We use Lemma 4 to estimate the lower bound of the proximity
of the transmitter, and Figure 4 shows the result. We can observe
that the estimated lower bound increases as α increases. However,
when α reaches the maximum value (i.e., 1.8) of the indoor
environment, the real distance is still bounded by (i.e., greater
than) the estimated lower bound. Specifically, when α = 1.8,
the lower bound of the proximity is 3.84 meters. This means the
transmitter should be at least 3.84 meters away from the receiver.
The actual distance between the transmitter and the receiver is
4.09 meters, which is slightly greater than the lower bound 3.84
meters.

Note that long-haul communications may desire a much re-
laxed tightness of the proximity lower bound. For example, GPS
satellites running on the Low Earth Orbit have an altitude of
approximately 2,000,000 meters (1,200 miles). With a proximity
lower bound of 1,000,000 meters (i.e., the bound is less than the
actual proximity by 50%), it would be possible to prevent most
attackers from impersonating the satellites, because it is usually
very difficult for the attacker to achieve such a long transmission
range.

3.3 System Design
In what follows, we show how the theoretical result of Lemma 4
can be used in a practical communication system to achieve the
far proximity identification.

The verifier’s objective is to find out the proximity lower
bound of the prover, i.e., to verify that the prover is at least a
certain distance away. According to Lemma 4, the proximity lower
bound is computed by c

B(f
2
α−1)

. Thus, the verifier can simply

compute this bound with the knowledge of the speed of light c, the
system bandwidth B, the path loss exponent α, and the proximity
fingerprint f . The speed of light c is a universal physical constant
and the bandwidth B is a system configuration parameter, and
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both of them are known to the verifier. The path loss exponent α
can be either obtained empirically, or can be determined using the
typical values. The proximity fingerprint f is the only remaining
factor that the verifier needs to decide to compute the lower bound.

As we discussed earlier, the fingerprint f is the ratio of Ar1
to Ar2, where Ar1 and Ar2 are the amplitudes of the first and
the second received multipath components. Ar1 and Ar2 can be
extracted from the channel impulse response. A wireless packet
is usually preceded by a preamble, a special data content that
indicates the beginning of an incoming packet. When the prover
sends a packet to the wireless channel, the verifier will first capture
the preamble using the match filtering technique [12]; then the
verifier knows that there is an incoming packet and continues to
receive the payload. The preamble not only enables packet capture,
but also enables the estimation of the channel impulse response at
the verifier.

After receiving the preamble, the verifier can use existing
channel estimation techniques (e.g., least-square (LS) and lin-
ear minimum mean squared error (LMMSE) estimators [4]) to
estimate the channel impulse response from the preamble, and
thereby obtain the values of Ar1 and Ar2 and the proximity
fingerprint f = Ar1/Ar2. It is worth pointing out that using the
preamble is not the only way to obtain Ar1 and Ar2. The verifier
can also use blinding estimation methods (e.g., [39]) to estimate
the channel impulse response from the entire content of the
preamble and the payload. In addition, the verifier can use hybrid
methods (e.g., [15]) that combine preamble-based estimation and
blind estimation together to improve the estimation accuracy.
After obtaining the proximity fingerprint f and demodulating the
payload and authentication information, the verifier then verifies
the prover’s proximity using Lemma 4.

Dealing with the Wireless Uncertainty: Wireless channels
can be affected by random environmental factors like temperature,
humidity, and vegetation. Thus, the estimated channel impulse
response may be time-varying and fluctuate around a center value.
To improve the proximity authentication accuracy, instead of using
only one channel impulse response to estimate the proximity, we
propose to estimate the proximity based on multiple channel im-
pulse responses, which are collected over a certain time window.
Each channel impulse response can yield a set of amplitude ratios,
and the corresponding set of estimated proximity. Suppose there
are L multiple paths and n channel impulse responses, the verifier
will obtain a total of L ∗ n estimates of the prover’s proximity.
The verifier then uses the mean value of these estimates as the
proximity authentication output, so that the impact of random
noises can be mitigated with the boosted size of the sample space.

In addition, the path loss exponent α plays an important
role in authenticating the proximity. To make α resilient against
environmental changes, we propose to use training phases to
calibrate α periodically. In a training phase, the verifier estimates
the proximity of an authenticated beacon transmitter, whose real
distance is already known to the verifier. The verifier compares
the estimated proximity with the real distance between the beacon
transmitter and itself. Based on the comparison result, the verifier
adjusts α so that the difference between the estimation output
and real distance can be minimized. After the training phase, the
verifier uses calibrated α to identify the proximity of an unknown
wireless device.

By averaging over multiple channel measurements and using
a real time α, the verifier can cope with environment changes and
improve the proximity authentication performance.

3.4 Implication
Lemma 4 indicates that the prover is at least c

B(f
2
α−1)

meters

away from the verifier. This range is determined by the speed of
light c, the system bandwidth B, the path loss exponent α, and
the proximity fingerprint f . Note that c, α, and B are system
constants that are determined by the physical features of the
propagation medium. Thus, they are are not manipulatable. Also,
there are significant practical hurdles to manipulate the proximity
fingerprint f , as described in Section III-A. Therefore, the provers
can prove (or cannot repudiate) that it is at least c

B(f
2
α−1)

meters
away.

On the other hand, Lemma 4 reveals a good feature of the pro-
posed technique, i.e., it supports passive proximity identification.
As we discussed earlier, c, α, and B are system constants that
are already known to the verifier. The proximity fingerprint f is
computed based on channel impulse responses. Existing channel
estimation techniques are typically passive, and they do not rely
on active two-way interactions between the prover and the verifier
to estimate channel impulse responses. With the knowledge of
c, α, B, and f , the verifier can directly compute the proximity
lower bound of the prover. The passive verification not only
reduces communication overhead, but also increases the difficulty
for an adversary to recognize an on-going proximity identification
activity.

4 ATTACKS AND COUNTERMEASURES

A proximity fingerprint itself is unforgeable, because it is extracted
from channel impulse responses, which have been regarded as
”signatures” to uniquely identify the wireless link between a
transmitter and a receiver. However, an attacker may launch
attacks targeting at the verification decision process such that
the verifier gets an incorrect verification decision. Specifically,
the attacker is able to intercept, interfere, or even jam the signal
transmission between the prover and verifier, and aims at causing
false negative/positive errors to fool the verifier to get a wrong
decision on a dishonest/benign prover. In addition, a dishonest
prover may manipulate the channel estimation process to create a
fake channel impulse response at the verifier or collaborate with
attackers to generate a mixed received signal to fool the verifier
with a wrong decision.

To fool the verifier, the attacker may try to collaborate with
another active wireless device or equip with multiple antennas to
create a fake second path by transmitting signals from a different
direction. In this case, the attacker must make sure that there is no
multipath effect for the signals traveling on the direct path (e.g.,
the path from the prover to the verifier) and the fake path (e.g., the
path from the active wireless device to the verifier). Otherwise,
the attacker cannot control and guarantee that the fake path is
exactly the second received path at the verifier side. Eliminating
the multipath effect completely is normally regarded as infeasible.

In this paper, we focus on three other major attacks against the
far proximity fingerprinting and they are:

• Jam-and-replay attack: The attacker may jam the prover
and replay an intercepted signal to fool the verifier taking
the attacker’s proximity as the prover’s proximity.

• Flipping attack: The attacker may collaborate with ma-
licious provers to generate mixed received signals at the
verifier, and thus result in the false negative and positive
errors.
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• Spoofing attack: A dishonest prover may try to create a
fake channel impulse response at the verifier by manipu-
lating the channel estimation process.

4.1 Dealing with Jam-and-replay Attacks
4.1.1 Attack methodology
In the jam-and-replay attack, the attacker first intercepts the
transmit signal from the prover, and at the same time jams the
transmission to prevent the verifier from receiving the original
signal from the prover. Then the attacker replays the intercepted
signal from the prover at the attacker’s own location, such that
the verifier is fooled into taking the attacker’s proximity as the
prover’s proximity. Because the attacker jams the original trans-
mission between the prover and verifier, traditional anti-replay
mechanisms such as sequence numbers do not work.

4.1.2 Defense approach
A common method of addressing jam-and-replay attacks is to
explore timestamps (e.g., [18]). In such a method, the sender
includes a timestamp in the transmitted message, which indicates
the time when a particular bit or byte called the anchor (e.g.,
the start of the message header) is transmitted over the air. Upon
receiving a frame, the receiver can use this timestamp and its local
message receiving time to estimate the message traverse time. An
overly long time indicates that the message has been forwarded by
an intermediate attacker.

Timestamps-based method requires clock synchronization be-
tween the sender and the receiver, but it generally has a low
synchronization requirement in common wireless applications.
For example, in an 11 Mbps 802.11g wireless network, the
transmission of a typical 1500-byte TCP message requires 1.09
(i.e., 1500∗8

11×103 ) milliseconds. Thus, the attacker at least doubles
the transmission time of the message to 2.18 milliseconds. As
long as the verifier and the prover have coarsely synchronized
clocks that differ in the order of milliseconds, the verifier can
detect jam-and-replay attacks. In practice, multiple schemes can
be applied to satisfy such clock synchronization requirement to
detect the attack [21]. For example, in IEEE 802.11 standard,
it specifies the timing synchronization function (TSF) to fulfill
timing synchronization among users. Since the TSF is based on a
1 MHz clock and ”ticks” in microseconds, it can achieve the time
accuracy in the range of few microseconds (us), which is orders of
magnitude smaller than milliseconds (ms). Note that the synchro-
nization requirement can be further relaxed in GPS applications.
GPS satellites have a transmission rate ranging between 20 bits/s
and 100 bits/s [1]. The transmission of a standard 1500-bits GPS
navigation message [1] takes 15 – 75 seconds, and accordingly the
synchronization accuracy can be reduced to the order of seconds.

In addition, to launch jam-and-replay attacks, the attacker must
send jamming signals to jam the wireless transmission. Jamming
attacks have been extensively studied in the literature, and vari-
ous techniques regarding jamming detection and countermeasures
have been proposed (e.g., [10], [17], [34]). The prover and the
verifier can also use existing jamming detection or anti-jamming
techniques to discover the presence of jam-and-replay attacks, or
to defend against such attacks.

4.2 Dealing with Flipping Attacks
4.2.1 Attack methodology
The attacker can collaborate with malicious provers or interfere
legitimate provers to generate a mixed received signals at the ver-

ifier, and thus result in a flipped decision (i.e., in far proximity→
out of far proximity and out of far proximity→ in far proximity).
Specifically, the attacker uses its own proximity to “pollute” the
prover’s proximity. Assume the prover and the attacker are dp and
da meters away from the verifier respectively, where dp � da or
da � dp. The attacker sends signals to the verifier along with the
transmission of the prover. Suppose the attacker and the prover
do not overwrite each other’s signal (e.g., by using a very high
transmission power). Thus, the verifier receives a mixed signal
formed by both the prover and the attacker’s signals. Intuitively,
the proximity fingerprint extracted from the mixed signal will
reflect proximity features of both the attacker and the prover,
and thus the corresponding proximity lower bound d estimated
based on the proximity fingerprint can greatly deviate from the
real proximity lower bound dp of the prover.
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Fig. 5. Example of flipping attacks: the mixed channel impulse response
reflects proximity features of both the transmitter A and B.

We conducted experiments using the CRAWDAD dataset to
examine the impact of the attacker. The dataset includes over 9,300
real channel impulse response measurements in a 44-node wireless
network [36]. Two transmitters (nodes 31 and 35) and a receiver
(node 44) from the data set are used for the experiments. Figure 5
shows the real measured channel impulse responses between the
transmitters and the receiver. Transmitter A is positioned 1.83
meters away from the receiver. The proximity fingerprint, the
amplitude ratio of the first received multipath component to that of
the second one, is about 11.06. Accordingly, the estimated lower
bound of the transmitter’s proximity is 1.67 meters. Compared to
transmitter A, transmitter B is farer away from the receiver. The
distance between transmitter B and the same receiver is 14.15
meters. Transmitter B’s proximity fingerprint is about 1.80 and
the estimated proximity lower bound is 12.99 meters. We let
transmitters A and B send signals to the receiver at the same time.
Thus, the receiver receives a mixed signal from both transmitters.
The mixed signal can result in a channel impulse response as
shown in Figure 5. The proximity fingerprint estimated from this
channel impulse response is 2.44, and the corresponding estimated
proximity lower bound is 8.85 meters, which falls between the true
bounds of transmitter A (1.67) and transmitter B (12.99).

The experiment results show that it is possible for an attacker
to use its own proximity to significantly affect the estimated
proximity lower bound of the prover. Consequently, a nearby
attacker may fool the receiver into believing that a far-away prover
is not far away, and vice versa.
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Fig. 6. Channel impulse response measured in normal scenario
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Fig. 7. Channel impulse response measured in the scenario of flipping
attacks

4.2.2 Defense approach
A basic solution to deal with flipping attacks is to use existing
jamming detection approaches. The attacker’s signals cause the
wireless interference to the transmission, and thus they can be
regarded as jamming signals. Jamming attacks have been exten-
sively studied in the literature, and various techniques regarding
jamming detection have been proposed (e.g., [9], [11], [17], [29]–
[31], [34], [41]). The verifier may use existing jamming detection
techniques to discover the presence of flipping attacks.

However, one drawback of jamming detection techniques is
that they require the attacker to constantly jam the prover’s trans-
mission for a relatively long time, such that the receiver can collect
enough jammed signal samples. By analyzing those samples, the
receiver can obtain important statistical values, including packet
loss rate, bit error rate, and received signal strength. Those values
enable the receiver to make a decision regarding whether or not
the communication system is under jamming attacks. However, if
the attacker jams the transmission for a short time, the receiver
may not be able to get an accurate estimate of those statistical
values, thereby reporting an incorrect decision.

We propose advanced defense techniques to deal with flipping
attacks. Traditional jamming detection techniques require constant
long-term jamming, because the detection decision is based on
statistical values obtained from a certain amount of jammed
signal samples. To deal with a short-term flipping attacker, we
design defense techniques without relying on statistical values.
Intuitively, due to the absence or imperfect synchronization, there
exists a tiny clock discrepancy between the attacker and the
prover. This clock discrepancy is actually a time-varying random
variable. When there exist flipping attacks, the attacker’s and the
prover’s signals mix together, and the clock discrepancy introduces
randomness to the mixed signal.

We performed experiments using the CRAWDAD dataset to
compare the channel impulse responses obtained from non-mixed
and mixed signals. We considered a normal scenario and an attack
scenario. In the first scenario, only the prover transmits signals to
the verifier, while in the second one, the attacker launches flipping
attacks by interfering the prover’s transmission. Figure 6 shows
5 channel impulse responses in the normal scenario and each of
them is extracted from a short-term signal that lasts for about
250 nanoseconds. We can observe that those channel impulse
responses are similar to each other in shape. Figure 7 shows 5
channel impulse responses extracted from the mixed signals in the
attack scenario. Unlike the normal scenario, the channel impulse

responses exhibit random shapes and they are quite different from
each other.

Therefore, we can detect the presence of flipping attacks
through checking the consistency among channel impulse re-
sponses. Specifically, we can compute the difference between
successive channel estimations. The channel is considered as pol-
luted, if two successive estimated channels change significantly.
Specifically, assume we have two successive channel estimations
hi and hj, their difference is denoted as the Euclidean distance
dij = ||hi − hj||. Then we compare dij with a threshold τ , for
a constant τ > 0. When dij > τ , the channel is considered as
polluted and a flipping attack is detected.

The flipping attack detection can be viewed as a choice
between two events F0 and F1, where F0 indicates the event of a
normal scenario, while F1 indicates the event of a flipping attack.
The density functions conditioned on F0 and F1 can be denoted
as fdij (dij |F0) and fdij (dij |F1) respectively. Accordingly, we
can obtain the probability of false alarm and missed detection
as Pf =

∫∞
x=τ fdij (x|F0)dx and Pm =

∫ τ
x=0 fdij (x|F1)dx

respectively. As both probabilities are functions of the threshold
τ , there is a tradeoff between the false alarm rate and missed
detection rate. In practice, we may empirically select a threshold
τ to achieve a high detection rate and at the same time, maintain a
relatively low false alarm rate. In addition, to further minimize the
false alarm caused by the normal channel fading, we compare the
differences among n channel estimations(n > 2). The channel
will be treated as polluted, only when p out of n channel
estimations are dramatically changed, where p is the threshold
of the flipping attack indicator.

4.3 Dealing with Spoofing Attacks

4.3.1 Attack methodology

Instead of creating real-world fake paths, the attacker may target
the channel estimation process, such that the verifier obtains a
fake impulse response specified by the attacker. Let Sv denote the
symbols (i.e. transmission units in physical layer) received by the
verifier, and Sv can be represented as Sv = h ∗ Sp + nv, where
Sp are the preambles, h is the actual channel impulse response
between the verifier and the prover, and nv is the channel noise,
respectively. Upon receiving Sv, the verifier uses Sp and Sv as the
input of the channel estimation algorithm (e.g., LS and LMMSE),
and the output of the algorithm is the estimated channel impulse
response.
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In general, the prover and the verifier must agree on the same
preambles to achieve the accurate channel estimation. However,
it is possible for a dishonest prover to specify a fake channel
impulse response by modifying the transmit preambles. Let S′p
denote the preambles to be transmitted by a dishonest prover, and
let S′v denote the corresponding received symbols. S′v can be
represented by S′v = h ∗S′p +n′v [28]. Further let ha denote the
fake channel estimation result chosen by the dishonest prover. The
goal of the dishonest prover is to find symbols S′p, such that when
S′p arrive at the verifier, the corresponding received symbols S′v
can result in an estimated channel impulse response that is equal
to ha. To achieve this goal, the prover let S′v = ha ∗ Sp + nv,
i.e., h ∗ S′p + n′v = ha ∗ Sp + nv.

Upon receiving S′v, the verifier uses Sp and S′v to estimate
the channel impulse response. Because S′v = ha ∗ Sp + nv,
the estimated channel impulse response will be equal to ha. We
rewrite the equation h∗S′p+n′v = ha∗Sp+nv as h∗S′p+n = S,
where S = ha ∗ Sp and n (= n′v − nv) is the white Gaussian
channel noise. By using the standard least square approach [4], we
can obtain that S′p = (HHH)−1HHS, where H is the Toeplitz
matrix of h. By sending S′p to the verifier, the prover can fool the
verifier to obtain a fake channel results ha. Because all elements
in ha are chosen by the dishonest prover, the verifier will obtain
fake amplitude ratios that are specified by the prover.

4.3.2 Defense approach
To launch a successful spoofing attack, the dishonest prover must
first know the actual channel h between the prover and the verifier.
Otherwise, the attacker can only generate a unpredictable channel
estimation by randomizing the preambles. To defend against the
attack, we propose to introduce a passive auxiliary node, which we
refer to as the helper. Specifically, the prover and the verifier agree
on two different preambles Sp1 and Sp2, and the verifier and the
helper use Sp1 and Sp2 to estimate the channel impulse responses
from two successive transmissions of the prover. The basic idea is
that the dishonest prover cannot maintain the consistent channel
impulse responses at both the verifier and the helper with two
different preambles Sp1 and Sp2, especially when the prover has
no idea of the channel between the prover and the passive helper.

To facilitate the presentation, without loss of generality, we
omit the noise part in the following equations. To generate a fake
channel impulse response ha, the prover solves the fake preamble
S′p1 from the equation h ∗ S′p1 = ha ∗ Sp1, so that the verifier
will regard ha as the channel impulse response when uses Sp1

to estimate the channel. The helper also uses Sp1 to estimate its
channel impulse response from hh ∗ S′p1 = hah ∗ Sp1, where
hh and hah are the actual and the estimated channel impulse
response between the helper and the prover. For the attacker’s next
transmission, both the verifier and the helper will use the preamble
Sp2 to estimate the channel. Similarly, to fool the verifier, the
attacker must generate another fake preamble S′p2 such that it
satisfies h∗S′p2 = ha∗Sp2. However, the attacker can hardly fool
the verifier and the helper at the same time. Because the attacker
cannot know the channel between the attacker and the helper, the
fake preamble S′p2 will not necessary satisfy the helper node’s
equation hh ∗ S′p2 = hah ∗ Sp2. Thus, the channel estimation
result at the helper will be different from the previous channel
estimation result hah.

If the successive estimated channel impulse responses show
dramatic changes in a short time at the helper, the spoofing attacks
are detected and the helper triggers an alert at the verifier. To avoid

false alarms caused by normal channel fading, we can further
increase the number of preambles. The verifier and the helper
agree on n preambles (n > 2), and the alert will be triggered only
when p out of n channel estimations are detected as inconsistent,
where p is the threshold of the spoofing attack alerts.

4.4 Impact of a Cloned Prover
In an extreme scenario, a dishonest prover may use a collaborator
at a different location to forge the proximity. The collaborator
claims to be the prover and sends signals to the verifier. As a
result, the verifier will take the collaborator’s proximity as the
prover’s proximity. In this case, the verifier will send the data
to a higher layer for authenticity verification. Such verification
will fail if the prover does not disclose its personal information
(e.g., user ID, network address, private key) to the collaborator.
However, the verification does succeed if the collaborator has all
the information of the prover, in which case the collaborator is
essentially a full copy of the prover. Therefore, it is not practical
to detect such a same-identity attack in any proximity detection
system, including all distance bounding protocols. To defeat such
attacks, the verifier needs to enforce existing security mechanisms
like duplicated nodes detection (e.g., [25]) or hardware biometrics
authentication (e.g., [6]), which are orthogonal to this work.

5 EXPERIMENTAL EVALUATION

The proposed far proximity identification approach identifies
whether a prover is at least a certain distance away from the
verifier. To evaluate the performance of the proposed far proximity
detection approach, two key questions are of particular interest.
The first question is how likely it is that the detection method
makes an error. An error happens when a prover is identified as
at least β meters away, while the real distance d between the
verifier and the prover is less than the identified lower bound
β. The second question is how tight the estimated lower bound
is. Let ε denote the difference between the real distance d and
the lower bound β, i.e., ε = d − β. Ideally, to obtain a good
estimation accuracy, one would like to achieve a small ε. In this
section, we perform experiments using real-world channel data
to evaluate the performance of the proposed approach in a real
wireless environment.

5.1 Experiment Setup
Wireless propagation can be either line-of-sight (LoS) or non-LoS
(NLoS). In LoS scenarios, there exist no major or very few obsta-
cles residing between the transmitter and receiver, and thus LoS
scenarios usually feature better signal quality. In NLoS scenarios,
there exist a number of major obstacles between the transmitter
and receiver, and NLoS scenarios are more complicated with
higher signal distortion and sharper changes in signal strength.

Far proximity identification often applies to long-haul wireless
communications (e.g., GPS) in outdoor environments, which are
usually open and have a much stronger feature in LoS than NLoS.
Compared to outdoor environments, indoor environments like
offices, residential homes, and shops, are more complicated due to
the frequent occurrences of walls, people, furniture, cubicles, etc.
Thus, indoor environments usually have a fairly large number of
NLoS propagation paths. In our experiment, we choose the more
challenging indoor environment for our evaluation to examine the
worst-case performance of the proposed method.
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Fig. 8. Relationship between the distance and the proximity fingerprint.
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Fig. 9. Error rate as a function of pathloss exponent α.

5.1.1 Data Set

We validate the proposed far proximity identification technique us-
ing the CRAWDAD data set [26], which contains more than 9,300
real channel impulse response measurements (i.e., link signatures)
in a 44-node wireless network [36]. There are 44 × 43 = 1, 892
pairwise links between the nodes, and multiple measurements are
provided for each link [36]. The map of the 44 node locations
is shown in [27]. The measurement environment is an indoor
environment with obstacles (e.g., cubicle offices and furniture) and
scatters (e.g., windows and doors). More information regarding the
CRAWDAD data set can be found in [26], [36].

5.1.2 Evaluation Metrics

We herein use error rate and tightness of the bound as metrics
to evaluate the performance of the proposed technique in the real
world. In addition, the proximity lower bound is computed based
on a key factor, the proximity fingerprint. Thus, the proximity
fingerprints plays a vital role in proximity identification. To further
validate the the feasibility of using proximity fingerprints for
proximity identification, we also perform experiments to reveal
the relationship between the real distance and the proximity
fingerprints. Our evaluation metrics are summarized below.

• Error rate: The error rate is the ratio of the number
of failed trials (i.e., error happens in the trail) to the
total number of trials. An error happens when the real
distance between the verifier and the prover is less than
the identified proximity lower bound.
The error rate indicates how possible a nearby adversary
will be considered as a remote legitimate device. A small
error rate indicates a nearby adversary can hardly pretend
to be far away from the prover, and vice versa.

• Tightness of the bound: Tightness is the normalized
difference between the estimated lower bound and the real
distance (i.e., d−β

d , where β is the estimated proximity
lower bound, and d is the real distance between the verifier
and the prover).
Tightness indicates how close between the estimated result
and the real distance. A small tightness indicates a remote
device will not be falsely considered as a nearby adversary,
and vice versa.

• Proximity Fingerprints: The proximity fingerprint is the
ratio of the amplitude of the first received multipath
component to that of the second one.

5.2 Experiment Results
Based on the CRAWDAD data set, we perform experiments under
both LoS and NLoS scenarios to show the error rate, tightness of
the bound, and the relationship between the proximity fingerprint
and the distance.

We distinguish two types of channel impulse responses: if a
LoS path exists and there are no obstacles between the transmitter
and the receiver, we mark the corresponding channel impulse
responses as LoS channel impulse responses. Otherwise, we mark
them as NLoS channel impulse responses. Thus, we obtain two
sets of data. The first set is formed by all LoS channel impulse
responses, and the second one is formed by all NLoS channel
impulse responses. We perform our experiments using both sets.

5.2.1 Proximity fingerprint vs. distance
The proximity fingerprint is an important parameter in computing
the proximity lower bound. According to Lemma 4, the theoretical
proximity lower bound is calculated as c

B(f
2
α−1)

. From this

formula, we can easily derive that as the proximity fingerprint
f increases (other parameters remain the same), the proximity
lower bound decreases and vice versa. Note that the proximity
lower bound reveals the least distance between the verifier and the
prover. Thus, the increase of the proximity fingerprint f may also
indicate the decrease of the real distance and vice versa. We plot
the proximity fingerprint as a function of the distance in Figure 8.
We can see that the proximity fingerprint in the NLoS scenario
slightly differs from that of the LoS scenario in magnitude due
to the reflection loss. However, for both scenarios, their proximity
fingerprints exhibit the same tendency, i.e., they both decrease
as the distance increases. This observation is consistent with our
theoretical result.

5.2.2 Error Rate
Error rate vs. pathloss: To obtain the error rate, we experiment
as follows. Let NLoS denote the number of channel impulse
responses in the LoS data set. For each channel impulse response
in the data set, we compute the proximity fingerprint and the
corresponding proximity lower bound using Lemma 4. We also
compute the real distance between the transmitter and the receiver
based on their coordinates. If the lower bound is less than the real
distance, we mark the trial as successful. Otherwise, we mark the
trial as failed. Accordingly, the error rate is calculated as Nf

NLoS
,

where Nf is the number of failed trails and NLoS is the total
number of trials. We perform the experiment again using the NLoS
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Fig. 10. Error rate as a function of various distances in the LoS scenario
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Fig. 11. Error rate as a function of various distances in the NLoS scenario

data set and obtain the corresponding error rate for the NLoS
scenario.

The channel impulse responses are collected from an in-
door environment, and the corresponding pathloss exponent α
empirically ranges between 1.6 and 1.8. Thus, we perform our
experiment for different values of α in this range. Figure 9 plots
the error rate as a function of α. The pathloss exponent α reflects
how a signal is distorted and attenuated during its propagation, and
a large α can result in higher signal distortion and attenuation.
Accordingly, from Figure 9 we can observe that the error rate
increases as α increases. However, when α reaches the maximum
value for indoor environments, the achieved error rate in the LoS
scenario is as low as 0.075. For the minimum α of 1.6, the
proposed approach has a reduced error rate of 0.05.

For the NLoS scenario, we can still achieve an error rate
between 0.17 and 0.22. Note that NLoS scenarios are the worst-
case scenarios. Far proximity identification is typically used in
outdoor environments, which have the stronger LoS feature. As
shown in Figure 9, the error rate of LoS scenarios is much lower
than that of the NLoS scenarios.

Error rate vs. distance: We then perform experiments to
examine how the real distance affects the error rate. For each
channel impulse response in the LoS data set, we compute the
distance between the corresponding transmitter and the receiver.
Let dmax and dmin denote the maximum and minimum distance
among all computed distances. We calculate the error rate using
the set formed by channel impulse responses whose corresponding
distance are larger than a threshold distance. The threshold is
initially set as dmin and increases each time until it reaches dmax.
We perform the experiments again using the NLoS set.

Figure 10 shows the error rate as a a function of various
distances in the LoS scenario. The error rate decreases as distance
increases. The obvious reason is that a larger distance indicates a
longer distance between the transmitter and the receiver, and thus
a higher chance that the estimated proximity lower bound is less
than the distance. When distance approaches the maximum dis-
tance between the sender and the receiver, the corresponding error
rate is 0.01. When distance approaches the minimum distance, the
error rate slightly increases but it is still a small rate that ranges
between 0.05 and 0.07 for different α.

Figure 11 plots the error rate of the NLoS scenario for
α = 1.80, which results the worst error rate as compared to other
values of α. Contrary to the LoS scenario, the error rate of the
NLoS scenario increases as distance increases. That’s because in

the NLoS scenario a longer distance between the transmitter and
the receiver indicates a higher chance that there are more obstacles,
and thus a reduced proximity detection accuracy. The “worst worst
case” happens when distance approaches the maximum distance
dmax for the worst case NLoS scenario. However, as we can
observe from Figure 11, the achieved error rate of the “worst
worst case” is about 0.25. This means that we can successfully
obtain the proximity lower bound for a majority number (75%) of
verifiers. As distance decreases, the error rate decreases quickly.
When distance approaches the minimum distance, the achieved
error rate is about 0.15. Again, the experiment is performed in
an indoor environment (e.g., WiFi and Bluetooth), which has a
short signal propagation distance. Outdoor wireless applications
(e.g., space communications and TV broadcasting) usually have
the stronger LoS feature, and therefore can substantially benefit
from the proposed method in terms of significantly reducing the
error rate.

5.2.3 Tightness of the proximity bound

Our second evaluation metric is the tightness of the bound. To
evaluate the tightness, we perform the following experiments using
LoS and NLoS data sets. In all experiments, the pathloss exponent
α is set to the minimum and maximum values of 1.6 and 1.8. For
each channel impulse response in the LoS data set, we compute the
distance between the corresponding transmitter and the receiver
and the proximity lower bound. Based on the bound and the actual
distance, we can calculate the tightness of the bound. We then
sort all the tightness values and compute the empirical cumulative
distribution function (CDF) for them. We perform the experiment
again using NLoS data set and obtain the CDFs of the NLoS
tightness values.

Figure 12 shows the CDF curves of the tightness computed
using channel impulse responses collected in LoS and NLoS
scenarios. For the LoS scenario with α = 1.8, we can observe
that 95% of the tightness values are less than 0.2. The indoor
environment typically features a short propagation path, and thus a
0.2 tightness indicates a small absolute difference in distance. For
example, if the distance between the transmitter and receiver is 5
meters, the achieved tightness can be around 1 meter. In particular,
the maximum distance dmax between the transmitter and the
receiver is about 11 meters, and the corresponding proximity
bound is 9.56 meters, which is very close to the actual distance.

For the NLoS scenario with α = 1.8, we can observe from
Figure 12 that 90% of the tightness values are less than 0.3.
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Fig. 13. Empirical CDF of tightness with a distance of 50 meters

Compared to the LoS Scenario, the NLoS scenario has a reduced
performance due to the existence of obstacles. Again, the exper-
iment is conducted based on short-range communications, and a
0.3 tightness still suggests a small absolute difference in distance.
When α decreases to 1.6, the achieved tightness increases. That’s
because the corresponding estimated proximity lower bound de-
creases, and a decreased bound grows the difference between the
bound and the real distance, and thus augments the tightness.
However, for α = 1.6, we can still observe that a great majority
of the tightness values are fairly small, e.g., 95% and 80% of
the tightness values are less than 0.25 and 0.3 in the LoS and the
NLoS (worst-case) scenarios respectively. Note that such tightness
is usually sufficient to prevent attackers from impersonating the
transmitters in typical long-haul outdoor wireless applications. For
example, GPS satellites running on the Low Earth Orbit have an
altitude of approximately 2,000,000 meters (1,200 miles). With
a proximity lower bound of 1,000,000 meters (i.e., a tightness
of 0.5), it would be possible to prevent most attackers from
impersonating the satellites, because it is usually very difficult
for the attacker to achieve such a long transmission range.

5.2.4 The experiment for a longer distance scenario

We further conduct an experiment to evaluate the performance of
the proposed scheme in the scenario of a longer distance between
the prover and the verifier on top of the Universal Software Radio
Peripherals (USRPs), which are the radio frequency transceivers.

In the experiment, the transmit rate is set as 10 Mbps and
the distance between the prover and the verifier is set as 50
meters, which are the maximum rate and largest distance we can
achieve due to the hardware limitations of USRPs (i.e. processing
capability and transmission power). The experiment is done in the
outdoor scenario, and the corresponding path loss exponent α is
chosen as 5.0. We measure the channel impulse response for 1000
times, and for each measurement we estimate the corresponding
lower bound proximity. Note that during the measurements, the
environment may change since there are people walking between
the transmitter and receiver.

From the experiment results, we can observe an error rate of
0.0939. We also draw the empirical CDF of tightness in Figure 13.
As shown in this figure, the maximum tightness value is 0.3385.
As discussed earlier, such tightness is usually sufficient to prevent
attackers from impersonating a nearby transmitters in typical long-
range outdoor wireless applications.

6 RELATED WORK

Related work falls into the following two areas.
(a) Distance Bounding Protocols: Distance bounding protocols
are a class of protocols that determine an approximate distance
between a local device and a remote device. (e.g., [5], [32],
[38]). Distance bounding protocols and their variants are based
on the common observation that the distance between the local
and the remote devices is equal to the product of the speed of
electromagnetic wave and the one-way signal propagation time.
The approximate distance is obtained from a series of wireless
packets exchanged between the local device and the remote device.
Specifically, the local device sends a challenge to the remote
device, which then replies with a response that is generated based
on the challenge. The local device measures the round-trip time
between sending the challenge and receiving the response, sub-
tracts the processing delay from the round-trip time, and uses the
result to compute the distance. Because the response is generated
based on the challenge, the distance bounding protocol can prevent
the remote device from pretending to be closer than it actually is
by sending a fake response before it receives the challenge.

However, by delaying its response to a challenge, a remote
device can appear to be arbitrarily further from the local device
than it actually is. Hence, distance-bounding protocols cannot
enforce lower bounds on proximity (i.e., requirements that the
remote device be at least a certain distance from the local device).
For this reason, the GPS-device and mobile-phone examples used
for motivation in Section 1 cannot be enforced by distance-
bounding protocols.
(b) Close Proximity Identification: There also exist traditional
close proximity detection techniques (e.g., [8], [19]) that can
detect the presence of nearby objects without any physical contact.
These techniques use electromagnetic field changes to identify
a close object. A proximity sensor generates an electromagnetic
field or a beam of electromagnetic radiation (e.g., infrared). If an
object moves into the field range of the sensor, a field change
can result, and thus the sensor senses the presence of the object.
For example, a sound alert is triggered when a vehicle moves
into the close proximity of a worker or an obstacle. However,
traditional techniques cannot identify the proximity of a specific
object, because the proximity sensor reports all nearby objects as
long as those objects are in the field range.

Researchers later developed techniques that identify the close
proximity of an individual target if the target can emit wireless
signals (e.g., [7], [13], [20]). For example, based on the ob-
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servation that a strong received signal usually indicates a close
transmitter, Macii et al developed approaches that determine the
proximity of the remote wireless device by measuring received
signal strength [20]. However, the use of signal strength to
determine proximity was found to be insecure, as a dishonest
remote device can easily pretend to be close to the local device
by boosting its transmit power.

More recent efforts overcome this drawback with the assis-
tance of special hardware [7], [13]. Cai et al. proposed a scheme
that identifies the presence of a close wireless device by using
multiple antennas [7]. Halevi et al. proposed to use ambient sen-
sors to detect whether a Near-Field-Communication (NFC) device
is nearby or not [13]. Although those approaches can prevent
attackers manipulating transmit power to deceive the local device,
they cannot be directly extended to address the far proximity
identification problem. They output a decision regarding whether
a target is nearby, but such a decision cannot guarantee that the
target is at least a certain distance away. Also, the requirement of
special hardware such as multiple antennas and ambient sensors
introduces extra cost and may reduce their compatibility.

Liu et al. proposed a new close proximity identification ap-
proach that does not rely on special hardware [18]. By using
the wireless physical features that uniquely identify a wireless
link between a transmitter and a receiver, the proposed technique
enables the local device to distinguish between a nearby and a far-
away remote device. An attacker cannot manipulate such physical
features to pretend to be close to the local device. However,
similar to all previous approaches, this approach is a decision-
based, i.e. outputs a simple “yes” or “no” to indicate whether the
remote device is very close or not. Hence, it does not provide the
quantitative lower bound of the proximity, which is the primary
contribution of this paper.
(c) CSI Based Distance Tracking Scheme: Existing CSI dis-
tance tracking ideas mainly focus on providing accurate distance
estimation schemes. For example, Sen et al. proposed a distance
estimation scheme that can extract the signal strength and the
angle of only the direct path utilizing the channel state infor-
mation, and thus provide an accurate estimation result in WiFi
based localization systems [35]. On the other hand, the proposed
scheme aims to estimate the lower bound of the proximity and
focus on preventing a nearby adversary from impersonating a
remote legitimate device. Existing CSI distance tracking schemes
(e.g. [35]) may be vulnerable to such attacks, since attackers can
pretend to be a further distance away from the receiver if they
reduce the transmit power. In this way, the proposed scheme is
complementary to existing schemes to provide an accurate and
secure distance estimation scheme.

7 CONCLUSION

In this paper, we proposed a far proximity identification approach
that determines the lower bound of the distance between the
verifier and the prover. The key idea of the proposed approach
is to estimate the proximity lower bound from the unforgeable
fingerprint of the proximity. We developed a technique that can
extract the fingerprint of a wireless device’s proximity from the
channel impulse response of the signals sent by the device.
We also developed a technique that uses proximity fingerprint
to calculate the proximity lower bound. We have examined the
proposed approach through the real-world experimental evaluation
using the CRAWDAD data set [26]. Our results indicate that

the proposed approach is a promising solution for enforcing far
proximity policies in wireless systems.
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